3 research outputs found

    Independent external validation of a stroke recurrence score in patients with embolic stroke of undetermined source

    Get PDF
    Abstract Background Embolic stroke of undetermined source (ESUS) accounts for a substantial proportion of ischaemic strokes. A stroke recurrence score has been shown to predict the risk of recurrent stroke in patients with ESUS based on a combination of clinical and imaging features. This study aimed to externally validate the performance of the ESUS recurrence score using data from a randomized controlled trial. Methods The validation dataset consisted of eligible stroke patients with available magnetic resonance imaging (MRI) data enrolled in the PreDAFIS sub-study of the MonDAFIS study. The score was calculated using three variables: age (1 point per decade after 35 years), presence of white matter hyperintensities (2 points), and multiterritorial ischaemic stroke (3 points). Patients were assigned to risk groups as described in the original publication. The model was evaluated using standard discrimination and calibration methods. Results Of the 1054 patients, 241 (22.9%) were classified as ESUS. Owing to insufficient MRI quality, three patients were excluded, leaving 238 patients (median age 65.5 years [IQR 20.75], 39% female) for analysis. Of these, 30 (13%) patients experienced recurrent ischaemic stroke or transient ischemic attack (TIA) during a follow-up period of 383 patient-years, corresponding to an incidence rate of 7.8 per 100 patient-years (95% CI 5.3–11.2). Patients with an ESUS recurrence score value of ≥ 7 had a 2.46 (hazard ratio (HR), 95% CI 1.02–5.93) times higher risk of stroke recurrence than patients with a score of 0–4. The cumulative probability of stroke recurrence in the low-(0–4), intermediate-(5–6), and high-risk group (≥ 7) was 9%, 13%, and 23%, respectively (log-rank test, χ2 = 4.2, p = 0.1). Conclusions This external validation of a published scoring system supports a threshold of ≥ 7 for identifying ESUS patients at high-risk of stroke recurrence. However, further adjustments may be required to improve the model’s performance in independent cohorts. The use of risk scores may be helpful in guiding extended diagnostics and further trials on secondary prevention in patients with ESUS. Trial registration: Clinical Trials, NCT02204267. Registered 30 July 2014, https://clinicaltrials.gov/ct2/show/NCT02204267

    G392E neuroserpin causing the dementia FENIB is secreted from cells but is not synaptotoxic.

    Get PDF
    Funder: Pasteur Institute – Cenci Bolognetti FoundationFunder: Sapienza University of RomeFamilial encephalopathy with neuroserpin inclusion bodies (FENIB) is a progressive neurodegenerative disease caused by point mutations in the gene for neuroserpin, a serine protease inhibitor of the nervous system. Different mutations are known that are responsible for mutant neuroserpin polymerization and accumulation as inclusion bodies in many cortical and subcortical neurons, thereby leading to cell death, dementia and epilepsy. Many efforts have been undertaken to elucidate the molecular pathways responsible for neuronal death. Most investigations have concentrated on analysis of intracellular mechanisms such as endoplasmic reticulum (ER) stress, ER-associated protein degradation (ERAD) and oxidative stress. We have generated a HEK-293 cell model of FENIB by overexpressing G392E-mutant neuroserpin and in this study we examine trafficking and toxicity of this polymerogenic variant. We observed that a small fraction of mutant neuroserpin is secreted via the ER-to-Golgi pathway, and that this release can be pharmacologically regulated. Overexpression of the mutant form of neuroserpin did not stimulate cell death in the HEK-293 cell model. Finally, when treating primary hippocampal neurons with G392E neuroserpin polymers, we did not detect cytotoxicity or synaptotoxicity. Altogether, we report here that a polymerogenic mutant form of neuroserpin is secreted from cells but is not toxic in the extracellular milieu

    Early effect of thrombolysis on structural brain network organisation after anterior‐circulation stroke in the randomized WAKE‐UP trial

    Get PDF
    The symptoms of acute ischemic stroke can be attributed to disruption of the brain network architecture. Systemic thrombolysis is an effective treatment that preserves structural connectivity in the first days after the event. Its effect on the evolution of global network organisation is, however, not well understood. We present a secondary analysis of 269 patients from the randomized WAKE-UP trial, comparing 127 imaging-selected patients treated with alteplase with 142 controls who received placebo. We used indirect network mapping to quantify the impact of ischemic lesions on structural brain network organisation in terms of both global parameters of segregation and integration, and local disruption of individual connections. Network damage was estimated before randomization and again 22 to 36 h after administration of either alteplase or placebo. Evolution of structural network organisation was characterised by a loss in integration and gain in segregation, and this trajectory was attenuated by the administration of alteplase. Preserved brain network organization was associated with excellent functional outcome. Furthermore, the protective effect of alteplase was spatio-topologically nonuniform, concentrating on a subnetwork of high centrality supported in the salvageable white matter surrounding the ischemic cores. This interplay between the location of the lesion, the pathophysiology of the ischemic penumbra, and the spatial embedding of the brain network explains the observed potential of thrombolysis to attenuate topological network damage early after stroke. Our findings might, in the future, lead to new brain network-informed imaging biomarkers and improved prognostication in ischemic stroke
    corecore