34 research outputs found

    The gene for trypsin inhibitor CMe is regulated in trans by the lys 3a locus in the endosperm of barley (Hordeum vulgare L.)

    Full text link
    A cDNA encoding trypsin inhibitor CMe from barley endosperm has been cloned and characterized. The longest open reading frame of the cloned cDNA codes for a typical signal peptide of 24 residues followed by a sequence which is identical to the known amino acid sequence of the inhibitor, except for an Ile/Leu substitution at position 59. Southern blot analysis of wheat-barley addition lines has shown that chromosome 3H of barley carries the gene for CMe. This protein is present at less than 2%–3% of the wild-type amount in the mature endosperm of the mutant Risø 1508 with respect to Bomi barley, from which it has been derived, and the corresponding steady state levels of the CMe mRNA are about I%. One or two copies of the CMe gene (synonym Itc1) per haploid genome have been estimated both in the wild type and in the mutant, and DNA restriction patterns are identical in both stocks, so neither a change in copy number nor a major rearrangement of the structural gene account for the markedly decreased expression. The mutation at the lys 3a locus in Risø 1508 has been previously mapped in chromosome 7 (synonym 5H). A single dose of the wild-type allele at this locus (Lys 3a) restores the expression of gene CMe (allele CMe-1) in chromosome 3H to normal levels

    Genetics of CM-proteins (A-hordeins) in barley

    Full text link
    The CM-proteins, which are the main components of the A-hordeins, include four previously described proteins (CMa-1, CMb-1, CMc-1, CMd-1), plus a new one, CMe-1, which has been tentatively included in this group on the basis of its solubility properties and electrophoretic mobility. The variability of the five proteins has been investigated among 38 Hordeum vulgare cultivars and 17 H. spontaneum accessions. Proteins CMa-1, CMc-1 and CMd-1 were invariant within the cultivated species; CMd was also invariant in the wild one. The inheritance of variants CMb-1/CMb-2 and CMe-1/CMe-2,2 was studied in a cross H. spontaneum x H. vulgare. The first two proteins were inherited as codominantly expressed allelic variations of a single mendelian gene. Components CMe-2,2 were jointly inherited and codominantly expressed with respect to CMe-1. Gene CMb and gene(s) CMe were found to be unlinked. The chromosomal locations of genes encoding CM-proteins were investigated using wheat-barley addition lines. Genes CMa and CMc were associated with chromosome 1, and genes CMb and CMd with chromosome 4. These gene locations further support the proposed homoeology of chromosomes 1 and 4 of barley with chromosomes groups 7 and 4 of wheat, respectively. Gene(s) CMe has been assigned to chromosome 3 of barley. The accumulation of protein CMe-1 is totally blocked in the high lysine mutant Riso 1508 and partially so in the high lysine barley Hiproly

    Rajakerrosmallin kehittäminen tuulivoimalan lapojen jäätymisen simulointiohjelmaan

    No full text
    An improved boundary-layer model for the ice accretion software TURBICE was developed in this study. Special attention was paid to the surface roughness that is present in icing phenomena. Methods were selected based on requirements posed by detailed mass and heat transfer analyses related to the ice build-up. The developed differential boundary-layer model relies on transformation to describe an airfoil by a flat plate surface with a rectangular grid. Keller's box method is applied to solve the differential boundary-layer equations. An algebraic turbulence model based on mixing length is applied and modified for rough surfaces. The airfoil is simulated in a downstream marching order and, therefore, only flows without separation and reversed flow can be simulated. The model estimates the transition point by means of en method for smooth surfaces. A criterion based on the height of the sand-grain roughness is used with rough surfaces. The model was tested on a flat plate and a NACA 0012 airfoil, both for smooth and rough surfaces. Two additional transition models were also adopted for testing. Transition results together with the boundary-layer parameters were compared to theoretical models and experimental data. Results of the boundary-layer flow for a flat plate accurately coincide with theory. For a NACA 0012 airfoil, the results compare well with the angles of attack ranging from e.g. -5 to +5 degrees depending on the Reynolds number. Transition location was estimated with good accuracy. Inconsistencies were located on the leading edge and in the transition region. The rapid change of the boundary-layer parameters near the transition point was unphysical and could be estimated more effectively with a two-way coupled structure. Numerical behaviour, grid settings and the skin-friction coefficient definition caused the values of the skin-friction and heat-transfer coefficients to be overestimated on the leading edge. Heat transfer coefficient distributions were compared to the current version of TURBICE and experimental tests. Both the new model and TURBICE compared well with the experimental results for a smooth surface, but as the roughness was added, the new model produced more accurate results than TURBICE. One of the benefits of the new model is the more accurate local velocity profiles within the boundary layer, which enables more advanced heat and mass transfer analyses and application of a two-dimensional icing model in the future. Another benefit stems from the application of the inverse method, which allows the model to simulate short laminar separation bubbles. This is the first step towards simulating the regions of separated flow behind the horn type ice shapes.Tässä työssä kehitettiin parannettu rajakerrosmalli jäätymistä simuloivaan TURBICE ohjelmaan. Huomiota kiinnitettiin erityisesti pinnan karheuteen. jota esiintyy jäätymisilmiössä. Menetelmien valinnassa painotettiin yksityiskohtaisen massan- ja lämmönsiirtoanalyysin vaatimuksia jään kertymisessä. Kehitetty differentiaalinen rajakerrosmalli muuntaa siipiprofiilin tasolevyksi ja kuvaa sen suorakaiteen muotoisella laskentahilalla. Differentiaalimuotoiset rajakerrosyhtälöt ratkaistaan Kellerin laatikkomenetelmällä. Mallissa käytetään sekoituspituuteen perustuvaa algebrallista turbulenssimallia. joka on muokattu käytettäväksi karheilla pinnoilla. Siipiprofiilia simuloidaan järjestyksessä virtauksen suuntaisesti. joten ainoastaan kiinnittynyttä virtausta ilman virtauksen irtoamista ja takaisinvirtausta voidaan mallintaa. Malli arvioi transitiopisteen sijainnin en menetelmällä sileällä pinnalla. Karhealla pinnalla käytetään pinnankarheuden suuruuteen perustuvaa menetelmää. Mallia testattiin tasolevyllä ja NACA 0012 siipiprofiililla sekä sileälle että karhealle pinnalle. Kahta muuta transitiomallia käytettiin myös testaukseen. Transition tuloksia ja rajakerroksen parametreja verrattiin teoreettisiin malleihin ja kokeellisista tutkimuksista saatuihin tuloksiin. Tasolevyn tulokset vastaavat teoriaa tarkasti. NACA 0012 siipiprofiilille tulokset ovat hyviä esimerkiksi kohtauskulmien -5° ja +5° välillä riippuen Reynoldsin luvusta. Transitiopisteen sijainti arvioitiin hyvin. Epäkohtia tuloksissa löytyi johtoreunalla ja transitioalueella. Rajakerrosparametrien nopea muutos transitiopisteen lähellä oli luonnotonta ja niiden arviointia voitaisiin parantaa kaksisuuntaisella kytkennällä rajakerrosmallin ja kitkattoman virtauksen ratkaisijan välillä. Kitkakertoimen ja lämmönsiirtokertoimen arvot johtoreunalla olivat liian suuria yhtälöiden ratkaisun numeerisesta luonteesta, laskentahilan asetuksista ja kitkakertoimen määritelmästä johtuen. Lämmönsiirtokertoimen jakaumia verrattiin nykyiseen TURBICE versioon ja kokeellisiin tuloksiin. Sekä uuden mallin että TURBICE -ohjelman tulokset vastasivat hyvin kokeellisia tuloksia sileällä pinnalla, mutta karhealla pinnalla uusi rajakerrosmalli tuotti tarkempia tuloksia kuin TURBICE. Yksi uuden mallin etu on, että rajakerroksen paikalliset nopeusjakaumat voidaan mallintaa tarkasti. Se mahdollistaa edistyneemmän massan- ja lämmönsiirtoanalyysin sekä kaksiulotteisen jäätymismällin käytön tulevaisuudessa. Toinen etu on, että kun käänteinen menetelmä lisätään malliin, sillä voidaan mallintaa lyhyitä laminaareja irtoamiskuplia. Se on ensimmäinen askel kohti irronneen virtauksen alueen mallinnusta virtausta häiritsevien epäaerodynaamisten jäänmuotojen takana
    corecore