136 research outputs found

    Quasi 2D Bose-Einstein condensation in an optical lattice

    Full text link
    We study the phase transition of a gas of Rb atoms to quantum degeneracy in the combined potential of a harmonically confining magnetic trap and the periodic potential of an optical lattice. For high optical lattice potentials we observe a significant change in the temperature dependency of the population of the ground state of the system. The experimental results are explained by the subsequent formation of quasi 2D condensates in the single lattice sites.Comment: 7 pages (including 3 figures

    Superradiant light scattering from a moving Bose-Einstein condensate

    Get PDF
    We investigate the interaction of a moving BEC with a far detuned laser beam. Superradiant Rayleigh scattering arises from the spontaneous formation of a matter-wave grating due to the interference of two wavepackets with different momenta. The system is described by the CARL-BEC model which is a generalization of the Gross-Pitaevskii model to include the self-consistent evolution of the scattered field. The experiment gives evidence of a damping of the matter-wave grating which depends on the initial velocity of the condensate. We describe this damping in terms of a phase-diffusion decoherence process, in good agreement with the experimental results

    Collective excitations of a trapped Bose-Einstein condensate in the presence of a 1D optical lattice

    Full text link
    We study low-lying collective modes of a horizontally elongated 87Rb condensate produced in a 3D magnetic harmonic trap with the addition of a 1D periodic potential which is provided by a laser standing-wave along the horizontal axis. While the transverse breathing mode results unperturbed, quadrupole and dipole oscillations along the optical lattice are strongly modified. Precise measurements of the collective mode frequencies at different height of the optical barriers provide a stringent test of the theoretical model recently introduced [M.Kraemer et al. Phys. Rev. Lett. 88 180404 (2002)].Comment: 4 pages, 4 figure

    Optically-induced lensing effect on a Bose-Einstein condensate expanding in a moving lattice

    Full text link
    We report the experimental observation of a lensing effect on a Bose-Einstein condensate expanding in a moving 1D optical lattice. The effect of the periodic potential can be described by an effective mass dependent on the condensate quasi-momentum. By changing the velocity of the atoms in the frame of the optical lattice we induce a focusing of the condensate along the lattice direction. The experimental results are compared with the numerical predictions of an effective 1D theoretical model. Besides, a precise band spectroscopy of the system is carried out by looking at the real-space propagation of the atomic wavepacket in the optical lattice.Comment: 5 pages, 4 figures; minor changes applied and typos corrected; a new paragraph added; some references updated; journal reference adde

    Superfluid current disruption in a chain of weakly coupled Bose-Einstein Condensates

    Full text link
    We report the experimental observation of the disruption of the superfluid atomic current flowing through an array of weakly linked Bose-Einstein condensates. The condensates are trapped in an optical lattice superimposed on a harmonic magnetic potential. The dynamical response of the system to a change of the magnetic potential minimum along the optical lattice axis goes from a coherent oscillation (superfluid regime) to a localization of the condensates in the harmonic trap ("classical" insulator regime). The localization occurs when the initial displacement is larger than a critical value or, equivalently, when the velocity of the wavepacket's center of mass is larger than a critical velocity dependent on the tunnelling rate between adjacent sites.Comment: 8 pages, 4 figure

    Observation of subdiffusion of a disordered interacting system

    Full text link
    We study the transport dynamics of matter-waves in the presence of disorder and nonlinearity. An atomic Bose-Einstein condensate that is localized in a quasiperiodic lattice in the absence of atom-atom interaction shows instead a slow expansion with a subdiffusive behavior when a controlled repulsive interaction is added. The measured features of the subdiffusion are compared to numerical simulations and a heuristic model. The observations confirm the nature of subdiffusion as interaction-assisted hopping between localized states and highlight a role of the spatial correlation of the disorder.Comment: 8 pages, to be published on Physical Review Letter

    Insulating Behavior of a Trapped Ideal Fermi Gas

    Full text link
    We investigate theoretically and experimentally the center-of-mass motion of an ideal Fermi gas in a combined periodic and harmonic potential. We find a crossover from a conducting to an insulating regime as the Fermi energy moves from the first Bloch band into the bandgap of the lattice. The conducting regime is characterized by an oscillation of the cloud about the potential minimum, while in the insulating case the center of mass remains on one side of the potential.Comment: 4 pages, 4 figure

    Superfluid and dissipative dynamics of a Bose-Einstein condensate in a periodic optical potential

    Get PDF
    We create Bose-Einstein condensates of Rb-87 in a static magnetic trap with a superimposed blue-detuned 1D optical lattice. By displacing the magnetic trap center we are able to control the condensate evolution. We observe a change in the frequency of the center-of-mass oscillation in the harmonic trapping potential, in analogy with an increase in effective mass. For fluid velocities greater than a local speed of sound, we observe the onset of dissipative processes up to full removal of the superfluid component. A parallel simulation study visualizes the dynamics of the Bose-Einstein condensate and accounts for the main features of the observed behavior
    • …
    corecore