136 research outputs found
Quasi 2D Bose-Einstein condensation in an optical lattice
We study the phase transition of a gas of Rb atoms to quantum degeneracy in
the combined potential of a harmonically confining magnetic trap and the
periodic potential of an optical lattice. For high optical lattice potentials
we observe a significant change in the temperature dependency of the population
of the ground state of the system. The experimental results are explained by
the subsequent formation of quasi 2D condensates in the single lattice sites.Comment: 7 pages (including 3 figures
Superradiant light scattering from a moving Bose-Einstein condensate
We investigate the interaction of a moving BEC with a far detuned laser beam.
Superradiant Rayleigh scattering arises from the spontaneous formation of a
matter-wave grating due to the interference of two wavepackets with different
momenta. The system is described by the CARL-BEC model which is a
generalization of the Gross-Pitaevskii model to include the self-consistent
evolution of the scattered field. The experiment gives evidence of a damping of
the matter-wave grating which depends on the initial velocity of the
condensate. We describe this damping in terms of a phase-diffusion decoherence
process, in good agreement with the experimental results
Collective excitations of a trapped Bose-Einstein condensate in the presence of a 1D optical lattice
We study low-lying collective modes of a horizontally elongated 87Rb
condensate produced in a 3D magnetic harmonic trap with the addition of a 1D
periodic potential which is provided by a laser standing-wave along the
horizontal axis. While the transverse breathing mode results unperturbed,
quadrupole and dipole oscillations along the optical lattice are strongly
modified. Precise measurements of the collective mode frequencies at different
height of the optical barriers provide a stringent test of the theoretical
model recently introduced [M.Kraemer et al. Phys. Rev. Lett. 88 180404 (2002)].Comment: 4 pages, 4 figure
Optically-induced lensing effect on a Bose-Einstein condensate expanding in a moving lattice
We report the experimental observation of a lensing effect on a Bose-Einstein
condensate expanding in a moving 1D optical lattice. The effect of the periodic
potential can be described by an effective mass dependent on the condensate
quasi-momentum. By changing the velocity of the atoms in the frame of the
optical lattice we induce a focusing of the condensate along the lattice
direction. The experimental results are compared with the numerical predictions
of an effective 1D theoretical model. Besides, a precise band spectroscopy of
the system is carried out by looking at the real-space propagation of the
atomic wavepacket in the optical lattice.Comment: 5 pages, 4 figures; minor changes applied and typos corrected; a new
paragraph added; some references updated; journal reference adde
Superfluid current disruption in a chain of weakly coupled Bose-Einstein Condensates
We report the experimental observation of the disruption of the superfluid
atomic current flowing through an array of weakly linked Bose-Einstein
condensates. The condensates are trapped in an optical lattice superimposed on
a harmonic magnetic potential. The dynamical response of the system to a change
of the magnetic potential minimum along the optical lattice axis goes from a
coherent oscillation (superfluid regime) to a localization of the condensates
in the harmonic trap ("classical" insulator regime). The localization occurs
when the initial displacement is larger than a critical value or, equivalently,
when the velocity of the wavepacket's center of mass is larger than a critical
velocity dependent on the tunnelling rate between adjacent sites.Comment: 8 pages, 4 figure
Observation of subdiffusion of a disordered interacting system
We study the transport dynamics of matter-waves in the presence of disorder
and nonlinearity. An atomic Bose-Einstein condensate that is localized in a
quasiperiodic lattice in the absence of atom-atom interaction shows instead a
slow expansion with a subdiffusive behavior when a controlled repulsive
interaction is added. The measured features of the subdiffusion are compared to
numerical simulations and a heuristic model. The observations confirm the
nature of subdiffusion as interaction-assisted hopping between localized states
and highlight a role of the spatial correlation of the disorder.Comment: 8 pages, to be published on Physical Review Letter
Insulating Behavior of a Trapped Ideal Fermi Gas
We investigate theoretically and experimentally the center-of-mass motion of
an ideal Fermi gas in a combined periodic and harmonic potential. We find a
crossover from a conducting to an insulating regime as the Fermi energy moves
from the first Bloch band into the bandgap of the lattice. The conducting
regime is characterized by an oscillation of the cloud about the potential
minimum, while in the insulating case the center of mass remains on one side of
the potential.Comment: 4 pages, 4 figure
Superfluid and dissipative dynamics of a Bose-Einstein condensate in a periodic optical potential
We create Bose-Einstein condensates of Rb-87 in a static magnetic trap with a superimposed blue-detuned 1D optical lattice. By displacing the magnetic trap center we are able to control the condensate evolution. We observe a change in the frequency of the center-of-mass oscillation in the harmonic trapping potential, in analogy with an increase in effective mass. For fluid velocities greater than a local speed of sound, we observe the onset of dissipative processes up to full removal of the superfluid component. A parallel simulation study visualizes the dynamics of the Bose-Einstein condensate and accounts for the main features of the observed behavior
- …