33 research outputs found
Cosmological Parameters from CMB Maps without Likelihood Approximation
We propose an efficient Bayesian MCMC algorithm for estimating cosmological
parameters from CMB data without use of likelihood approximations. It builds on
a previously developed Gibbs sampling framework that allows for exploration of
the joint CMB sky signal and power spectrum posterior, P(s,Cl|d), and addresses
a long-standing problem of efficient parameter estimation simultaneously in
high and low signal-to-noise regimes. To achieve this, our new algorithm
introduces a joint Markov Chain move in which both the signal map and power
spectrum are synchronously modified, by rescaling the map according to the
proposed power spectrum before evaluating the Metropolis-Hastings accept
probability. Such a move was already introduced by Jewell et al. (2009), who
used it to explore low signal-to-noise posteriors. However, they also found
that the same algorithm is inefficient in the high signal-to-noise regime,
since a brute-force rescaling operation does not account for phase information.
This problem is mitigated in the new algorithm by subtracting the Wiener filter
mean field from the proposed map prior to rescaling, leaving high
signal-to-noise information invariant in the joint step, and effectively only
rescaling the low signal-to-noise component. To explore the full posterior, the
new joint move is then interleaved with a standard conditional Gibbs sky map
move. We apply our new algorithm to simplified simulations for which we can
evaluate the exact posterior to study both its accuracy and performance, and
find good agreement with the exact posterior; marginal means agree to less than
0.006 sigma, and standard deviations to better than 3%. The Markov Chain
correlation length is of the same order of magnitude as those obtained by other
standard samplers in the field.Comment: 9 pages, 3 figures, Published in Ap
Demonstration of magnetic field tomography with starlight polarization towards a diffuse sightline of the ISM
The availability of large datasets with stellar distance and polarization
information will enable a tomographic reconstruction of the
(plane-of-the-sky-projected) interstellar magnetic field in the near future. We
demonstrate the feasibility of such a decomposition within a small region of
the diffuse ISM. We combine measurements of starlight (R-band) linear
polarization obtained using the RoboPol polarimeter with stellar distances from
the second Gaia data release. The stellar sample is brighter than 17 mag in the
R band and reaches out to several kpc from the Sun. HI emission spectra reveal
the existence of two distinct clouds along the line of sight. We decompose the
line-of-sight-integrated stellar polarizations to obtain the mean polarization
properties of the two clouds. The two clouds exhibit significant differences in
terms of column density and polarization properties. Their mean
plane-of-the-sky magnetic field orientation differs by 60 degrees. We show how
our tomographic decomposition can be used to constrain our estimates of the
polarizing efficiency of the clouds as well as the frequency dependence of the
polarization angle of polarized dust emission. We also demonstrate a new method
to constrain cloud distances based on this decomposition. Our results represent
a preview of the wealth of information that can be obtained from a tomographic
map of the ISM magnetic field.Comment: 25 pages, 14 figures, published in ApJ, data appear in journa
Cross-correlating Carbon Monoxide Line-intensity Maps with Spectroscopic and Photometric Galaxy Surveys
Line-intensity mapping (LIM or IM) is an emerging field of observational
work, with strong potential to fit into a larger effort to probe large-scale
structure and small-scale astrophysical phenomena using multiple complementary
tracers. Taking full advantage of such complementarity means, in part,
undertaking line-intensity surveys with galaxy surveys in mind. We consider the
potential for detection of a cross-correlation signal between COMAP and blind
surveys based on photometric redshifts (as in COSMOS) or based on spectroscopic
data (as with the HETDEX survey of Lyman- emitters). We find that
obtaining accuracy in redshifts and
sources per Mpc with spectroscopic redshift determination
should enable a CO-galaxy cross spectrum detection significance at least twice
that of the CO auto spectrum. Either a future targeted spectroscopic survey or
a blind survey like HETDEX may be able to meet both of these requirements.Comment: 19 pages + appendix (31 pages total), 16 figures, 6 tables; accepted
for publication in Ap
Demonstration of Magnetic Field Tomography with Starlight Polarization toward a Diffuse Sightline of the ISM
The availability of large data sets with stellar distance and polarization information will enable a tomographic reconstruction of the (plane-of-the-sky-projected) interstellar magnetic field in the near future. We demonstrate the feasibility of such a decomposition within a small region of the diffuse interstellar medium (ISM). We combine measurements of starlight (R-band) linear polarization obtained using the RoboPol polarimeter with stellar distances from the second Gaia data release. The stellar sample is brighter than 17 mag in the R-band and reaches out to several kiloparsecs from the Sun. H i emission spectra reveal the existence of two distinct clouds along the line of sight. We decompose the line-of-sight-integrated stellar polarizations to obtain the mean polarization properties of the two clouds. The two clouds exhibit significant differences in terms of column density and polarization properties. Their mean plane-of-the-sky magnetic field orientation differs by 60°. We show how our tomographic decomposition can be used to constrain our estimates of the polarizing efficiency of the clouds as well as the frequency dependence of the polarization angle of polarized dust emission. We also demonstrate a new method to constrain cloud distances based on this decomposition. Our results represent a preview of the wealth of information that can be obtained from a tomographic map of the ISM magnetic field
WALOP-South: A Four Camera One Shot Imaging Polarimeter for PASIPHAE Survey. Paper I -- Optical Design
The WALOP-South instrument will be mounted on the 1 m SAAO telescope in South
Africa as part of the PASIPHAE program to carry out a linear imaging
polarization survey of the Galactic polar regions in the optical band. Designed
to achieve polarimetric sensitivity of across a
arcminute field of view, it will be capable of measuring the Stokes parameters
I, q and u in a single exposure in the SDSS-r broadband and narrowband filters
between . For each measurement, four images of the
full field corresponding to linear polarization angles of 0 deg, 45 deg, 90 deg
and 135 deg in the instrument coordinate system will be created on four
detectors from which the Stokes parameters can be found using differential
photometry. In designing the optical system, major challenges included
correcting for the dispersion introduced by large split angle Wollaston Prisms
used as analysers as well as other aberrations from the entire field to obtain
imaging quality PSF at the detector. We present the optical design of the
WALOP-South instrument which overcomes these challenges and delivers near
seeing limited PSFs for the entire field of view.Comment: 31 pages, 18 Figures and 8 Tables. Accepted in the Journal of
Astronomical Telescopes, Instruments, and System
Cross-correlating Carbon Monoxide Line-intensity Maps with Spectroscopic and Photometric Galaxy Surveys
Line-intensity mapping is an emerging field of observational work, with strong potential to fit into a larger effort to probe large-scale structure and small-scale astrophysical phenomena using multiple complementary tracers. Taking full advantage of such complementarity means, in part, undertaking line-intensity surveys with galaxy surveys in mind. We consider the potential for detection of a cross-correlation signal between COMAP and blind surveys based on photometric redshifts (as in COSMOS) or based on spectroscopic data (as with the HETDEX survey of Lyα emitters). We find that obtaining σ_z (1+z) ≲ 0.003 accuracy in redshifts and ≳10^(−4) sources per Mpc^3 with spectroscopic redshift determination should enable a CO-galaxy cross spectrum detection significance at least twice that of the CO auto spectrum. Either a future targeted spectroscopic survey or a blind survey like HETDEX may be able to meet both of these requirements