22 research outputs found

    Detection of azaspiracids in mussels using electrochemical immunosensors for fast screening in monitoring programs

    Get PDF
    Given the widespread occurrence of azaspiracids (AZAs), it is clearly necessary to advance in simple and low-cost methods for the rapid detection of these marine toxins in order to protect seafood consumers. To address this need, electrochemical immunosensors for the detection of AZAs based on a competitive direct immunoassay using peroxidase-labelled AZA as a tracer were developed. An anti-AZA polyclonal antibody was immobilised in a controlled and stable manner on protein G or avidin-coated electrodes. Experimental conditions were first optimised using colorimetric immunoassays on microtitre plates, providing intermediate products already applicable to the accurate detection of AZAs. Then, transfer of the protein G and avidin–biotin interaction-based immunoassays to 8-electrode arrays provided compact and miniaturised devices for the high-throughput detection of AZAs. The low amounts of immunoreagents required as well as the potential for reusability of the avidin–biotin interaction-based immunosensors represented significant economic savings as well as a contribution to sustainability. The electrochemical immunosensors enabled the quantification of all regulated AZAs below the regulatory limit, as well as a broad range of other toxic AZA analogues (from 63 ± 3 to 2841 ± 247 μg AZA-1 equiv./kg for the protein G-based immunosensor and from 46 ± 2 to 3079 ± 358 μg AZA-1 equiv./kg for the avidin–biotin interaction-based immunosensor). The good agreement between the results obtained by the immunosensors and LC–MS/MS in the analysis of naturally contaminated mussel samples demonstrated the easy implementation of electrochemical immunosensors for routine analysis of AZAs in food safety monitoring programs.info:eu-repo/semantics/acceptedVersio

    A feasibility study into the production of a mussel matrix reference material for the cyanobacterial toxins microcystins and nodularins.

    Get PDF
    Microcystins and nodularins, produced naturally by certain species of cyanobacteria, have been found to accumulate in aquatic foodstuffs such as fish and shellfish, resulting in a risk to the health of the seafood consumer. Monitoring of toxins in such organisms for risk management purposes requires the availability of certified matrix reference materials to aid method development, validation and routine quality assurance. This study consequently targeted the preparation of a mussel tissue reference material incurred with a range of microcystin analogues and nodularins. Nine targeted analogues were incorporated into the material as confirmed through liquid chromatography with tandem mass spectrometry (LC-MS/MS), with an additional 15 analogues detected using LC coupled to non-targeted high resolution mass spectrometry (LC-HRMS). Toxins in the reference material and additional source tissues were quantified using LC-MS/MS, two different enzyme-linked immunosorbent assay (ELISA) methods and with an oxidative-cleavage method quantifying 3-methoxy-2-methyl-4-phenylbutyric acid (MMPB). Correlations between the concentrations quantified using the different methods were variable, likely relating to differences in assay cross-reactivities and differences in the abilities of each method to detect bound toxins. A consensus concentration of total soluble toxins determined from the four independent test methods was 2425 ± 575 µg/kg wet weight. A mean 43 ± 9% of bound toxins were present in addition to the freely extractable soluble form (57 ± 9%). The reference material produced was homogenous and stable when stored in the freezer for six months without any post-production stabilization applied. Consequently, a cyanotoxin shellfish reference material has been produced which demonstrates the feasibility of developing certified seafood matrix reference materials for a large range of cyanotoxins and could provide a valuable future resource for cyanotoxin risk monitoring, management and mitigation

    Combined oral toxicity of azaspiracid-1 and yessotoxin in female nmri mice

    Get PDF
    For many years, the presence of yessotoxins (YTXs) in shellfish has contributed to the outcome of the traditional mouse bioassay and has on many occasions caused closure of shellfisheries. Since YTXs do not appear to cause diarrhoea in man and exert low oral toxicity in animal experiments, it has been suggested that they should be removed from regulation. Before doing so, it is important to determine whether the oral toxicity of YTXs is enhanced when present together with shellfish toxins known to cause damage to the gastrointestinal tract. Consequently, mice were given high doses of YTX, at 1 or 5 mg/kg body weight, either alone or together with azaspiracid-1 (AZA1) at 200 μg/kg. The latter has been shown to induce damage to the small intestine at this level. The combined exposure caused no clinical effects, and no pathological changes were observed in internal organs. These results correspond well with the very low levels of YTX detected in internal organs by means of LC-MS/MS and ELISA after dosing. Indeed, the very low absorption of YTX when given alone remained largely unchanged when YTX was administered in combination with AZA1. Thus, the oral toxicity of YTX is not enhanced in the presence of sub-lethal levels of AZA1

    Multihapten Approach Leading to a Sensitive ELISA with Broad Cross-Reactivity to Microcystins and Nodularin

    No full text
    Microcystins (MCs) are a group of biotoxins (>150) produced by cyanobacteria, with a worldwide distribution. MCs are hepatotoxic, and acute exposure causes severe liver damage in humans and animals. Rapid and cheap methods of analysis are therefore required to protect people and livestock, especially in developing countries. To include as many MCs as possible in a single analysis, we developed a new competitive ELISA. Ovine polyclonal antibodies were raised using an immunogen made by conjugating a mixture of microcystins to cationised bovine serum albumin, and the plate-coating antigen was prepared by conjugating [Asp<sup>3</sup>]­MC-RY to ovalbumin. This strategy was used also to minimize specificity for particular microcystin congeners. Cross-reactivity studies indicate that the ELISA has broad specificity to microcystins and also detects nodularin, providing a sensitive and rapid analytical method for screening large numbers of samples. The limit of quantitation for microcystins in drinking water is 0.04 μg/L, well below the WHO’s maximum recommendation of 1 μg/L. The ELISA can be used for quantifying total microcystins in various matrices, including drinking water, cyanobacterial cultures, extracts, and algal blooms, and may be useful in detecting metabolites and conjugates of MCs

    Multihapten Approach Leading to a Sensitive ELISA with Broad Cross-Reactivity to Microcystins and Nodularin

    No full text
    Microcystins (MCs) are a group of biotoxins (>150) produced by cyanobacteria, with a worldwide distribution. MCs are hepatotoxic, and acute exposure causes severe liver damage in humans and animals. Rapid and cheap methods of analysis are therefore required to protect people and livestock, especially in developing countries. To include as many MCs as possible in a single analysis, we developed a new competitive ELISA. Ovine polyclonal antibodies were raised using an immunogen made by conjugating a mixture of microcystins to cationised bovine serum albumin, and the plate-coating antigen was prepared by conjugating [Asp<sup>3</sup>]­MC-RY to ovalbumin. This strategy was used also to minimize specificity for particular microcystin congeners. Cross-reactivity studies indicate that the ELISA has broad specificity to microcystins and also detects nodularin, providing a sensitive and rapid analytical method for screening large numbers of samples. The limit of quantitation for microcystins in drinking water is 0.04 μg/L, well below the WHO’s maximum recommendation of 1 μg/L. The ELISA can be used for quantifying total microcystins in various matrices, including drinking water, cyanobacterial cultures, extracts, and algal blooms, and may be useful in detecting metabolites and conjugates of MCs

    Multihapten Approach Leading to a Sensitive ELISA with Broad Cross-Reactivity to Microcystins and Nodularin

    No full text
    Microcystins (MCs) are a group of biotoxins (>150) produced by cyanobacteria, with a worldwide distribution. MCs are hepatotoxic, and acute exposure causes severe liver damage in humans and animals. Rapid and cheap methods of analysis are therefore required to protect people and livestock, especially in developing countries. To include as many MCs as possible in a single analysis, we developed a new competitive ELISA. Ovine polyclonal antibodies were raised using an immunogen made by conjugating a mixture of microcystins to cationised bovine serum albumin, and the plate-coating antigen was prepared by conjugating [Asp<sup>3</sup>]­MC-RY to ovalbumin. This strategy was used also to minimize specificity for particular microcystin congeners. Cross-reactivity studies indicate that the ELISA has broad specificity to microcystins and also detects nodularin, providing a sensitive and rapid analytical method for screening large numbers of samples. The limit of quantitation for microcystins in drinking water is 0.04 μg/L, well below the WHO’s maximum recommendation of 1 μg/L. The ELISA can be used for quantifying total microcystins in various matrices, including drinking water, cyanobacterial cultures, extracts, and algal blooms, and may be useful in detecting metabolites and conjugates of MCs

    Influence of biotic and abiotic factors on prymnesin profiles in three strains of<i> Prymnesium parvum</i>

    No full text
    Harmful algal blooms of Prymnesium parvum have resulted in significant fish kill events globally. These haptophytes produce the ichthyotoxic prymnesins, large polyethers categorized into A-, B- and C-types based on their carbon backbones with several analogs varying by the degree of glycosylation, chlorination, and double bonds. However, the influence of various biotic or abiotic factors on prymnesin profiles remains unknown. We investigated the influence of growth phase, nitrogen availability, light intensity, and salinity on prymnesin profiles of three P. parvum strains (UTEX 2797, K-0374 and PPSR01). Strains were selected based on their chemotypic expression of the three prymnesin backbones. Results demonstrated that different growth conditions led to strain-specific changes in prymnesin profiles. In the stationary phase, increased glycosylation was observed compared to the exponential growth phase for all strains. Additionally, at early stationary phase the tri-chlorinated analogs represented &gt;90 % of all prymnesins of P. parvum strains UTEX-2797 and PPSR01 when cultured at salinity of 10 psu. By gaining an understanding of the effects of biotic and abiotic factors, culture conditions could be modified to promote specific prymnesin profiles to support the development of analytical reference materials. Furthermore, evaluating prymnesin profiles in combination with toxicity assays will provide insights into prymnesin biosynthesis, mode of action and toxicity
    corecore