5 research outputs found

    FC1000 : normalized gene expression changes of systematically perturbed human cells

    No full text
    The systematic study of transcriptional responses to genetic and chemical perturbations in human cells is still in its early stages. The largest available dataset to date is the newly released L1000 compendium. With its 1.3 million gene expression profiles of treated human cells it offers many opportunities for biomedical data mining, but also data normalization challenges of new dimensions. We developed a novel and practical approach to obtain accurate estimates of fold change response profiles from L1000, based on the RUV (Remove Unwanted Variation) statistical framework. Extending RUV to a big data setting, we propose an estimation procedure, in which an underlying RUV model is tuned by feedback through dataset specific statistical measures, reflecting p-value distributions and internal gene knockdown controls. Applying these metrics-termed evaluation endpoints - to disjoint data splits and integrating the results to select an optimal normalization, the procedure reduces bias and noise in the L1000 data, which in turn broadens the potential of this resource for pharmacological and functional genomic analyses. Our pipeline and normalization results are distributed as an R package (nelanderlab.org/FC1000.html)

    Bayesian microarray one-way anova and grouping cell lines by equal expression levels

    No full text
    Bayesian microarray one-way anova and grouping cell lines by equal expression level

    Stem cell plasticity, acetylation of H3K14, and de novo gene activation rely on KAT7

    No full text
    Summary: In the conventional model of transcriptional activation, transcription factors bind to response elements and recruit co-factors, including histone acetyltransferases. Contrary to this model, we show that the histone acetyltransferase KAT7 (HBO1/MYST2) is required genome wide for histone H3 lysine 14 acetylation (H3K14ac). Examining neural stem cells, we find that KAT7 and H3K14ac are present not only at transcribed genes but also at inactive genes, intergenic regions, and in heterochromatin. KAT7 and H3K14ac were not required for the continued transcription of genes that were actively transcribed at the time of loss of KAT7 but indispensable for the activation of repressed genes. The absence of KAT7 abrogates neural stem cell plasticity, diverse differentiation pathways, and cerebral cortex development. Re-expression of KAT7 restored stem cell developmental potential. Overexpression of KAT7 enhanced neuron and oligodendrocyte differentiation. Our data suggest that KAT7 prepares chromatin for transcriptional activation and is a prerequisite for gene activation
    corecore