116 research outputs found

    Effect of geocomposite reinforcement on the performance of thin asphalt pavements: accelerated pavement testing and laboratory analysis

    Get PDF
    Abstract The objective of this study is to assess the effect of geocomposite reinforcement on fatigue cracking, reflective cracking and permanent deformation accumulation of thin asphalt pavements. For this purpose, a full-scale trial section was constructed with different interfaces: unreinforced (reference) and reinforced with three types of geocomposites, formed by the combination of a bituminous membrane with a fabric or grid. The experimental program included accelerated pavement testing (APT) carried out by means of Fast Falling Weight Deflectometer (FastFWD) and laboratory tests (three point bending tests) on samples taken from the trial section. After APT, significant permanent deflections were observed, likely due to the plastic yielding of the unbound layers. Nevertheless, all the geocomposites improved the permanent deformation resistance as compared to the unreinforced pavement by reducing the vertical strain at the top of the subgrade. Moreover, the geocomposites increased the energy necessary for the crack propagation by three to eight times with respect to the unreinforced pavement. Overall, these findings indicate that the use of geocomposites can extend the service life of thin asphalt pavements in terms of both cracking and permanent deformation accumulation

    Benthic foraminifers and siliceous sponge spicules assemblages in the Quaternary rhodolith rich sediments from Pontine Archipelago shelf

    Get PDF
    The bottom samples (Quaternary in age) of two cores (CS1 and Caro1) collected at 60 and 122 m water depth in the marine area near Ponza Island (Pontine Archipelago, Tyrrhenian Sea) are investigated. In particular, benthic foraminifers and siliceous sponge spicules are considered. The coralline red algae (pralines, boxworks and unattached branches) are abundant in both samples and, particularly, in the CS1 bottom as well as the benthic foraminifers. The siliceous sponge spicules also are very diversified and abundant in the CS1 bottom sample, while in the Caro1 bottom they are rare and fragmented. Benthic foraminiferal assemblage of two samples is dominated by Asterigerinata mamilla and Lobatula lobatula, typical epiphytic species but also able to live on circalittoral detrital seafloors, adapting to an epifaunal lifestyle. Based on these data the bottom of the studied cores represents the upper circalittoral zone, within the present-day depth limit distribution of coralline red algae in the Pontine Archipelago (shallower than 100 m water depth)

    Typing of KIR genes in unrelated hematopoietic stem cell transplants: influence of the donor KIR genotype on the outcome of the transplant.

    Get PDF
    In recent years, the anti-leukemic potential of Natural Killer (NK) cells and their role in hematologic malignancies and in Hematopoietic Stem Cell Transplants (HSCT) has attracted greater interest and a recent study by Cooley S. et al. showed a better clinical outcome when patients with Acute Myeloid Leukemia received a transplant from unrelated Group B KIR haplotypes donors. As a consequence of these results, an algorithm called "KIR B-content score" was formulated, based on the number of centromeric and telomeric Group B KIR haplotypes gene-content motifs. The KIR B-content score defines three categories of donors: Neutral donors have none or one KIR B motifs, Better donors have two or more B motifs without KIR Cen B/B and Best donors have two or more B motifs with KIR Cen B/B. The aim of our research is a retrospective analysis of HSC unrelated transplants performed in our center to analyze the effect of the donor KIR B status on the clinical-outcome. Our results showed a better overall survival-rate in the AML recipients, HLA mismatched with the donor, when the donor KIR B content status is Best/Better (37% vs 18% at three years P=0,028), whereas there is no beneficial effect for recipients with other haematological malignancies. Moreover, we observed that AML recipients, whose Donors KIR B status was Best/Better, had more incidence of aGvHD grade I II than patients whose Donors KIR B status was Neutral (70% vs 26%) and also a lower rate of relapse (36% vs 58%) and a better Disease Free Survival-rate (58% vs 38% at three years P=0,1) because of a better GvL effect

    Chemical, morphological and rheological characterization of bitumen partially replaced with wood bio-oil: Towards more sustainable materials in road pavements

    Get PDF
    Nowadays, sustainability and circular economy are two principles to be pursued in all fields. In road pavement engineering, they can be put into practice through the partial substitution of bitumen with industrial residues and by-products deriving from renewable materials. Within this framework, this paper presents an extensive investigation of the chemical, morphological and rheological properties of bio-binders obtained by mixing a conventional 50/70 bitumen with different percentages by weight (0, 5%, 10% and 15%) of a renewable bio-oil, generated as a residue in the processing of wood into pulp and paper. Results show that overall the bio-oil provides a softening effect, which, in terms of performance, leads to an improvement of the low-temperature behaviour and fatigue resistance with respect to the control bitumen, in spite of an increased tendency to permanent deformation. Although no chemical reaction appears to occur after blending, the peculiarities of the bio-oil affect the chemistry of the resulting bio-binders, whereas no phase separation is observed from the microscopic analysis. In addition, a Newtonian behaviour, an unchanged temperature susceptibility and a good fitting of 1S2P1D model to the rheological data are found, regardless of the bio-oil percentage considered. These promising outcomes suggest that such bio-binders can be favourably employed for several applications in road pavements. Keywords: Road materials, Bio-binders, FTIR, SARA, 1S2P1D, Sustainabilit

    Top-down cracking in Italian motorway pavements: A case study

    Get PDF
    Abstract Top-down cracking (TDC) is a distress affecting asphalt pavements and consists of longitudinal cracks that initiate on the pavement surface and propagate downwards. In general, TDC is more critical in the case of thick pavements with open-graded friction course (OGFC), which are the typical characteristics of Italian motorway pavements. Recent surveys showed the presence of many longitudinal cracks potentially ascribable to TDC on Italian motorways. Within this context, this study has two main objectives: 1) to define reliable identification criteria allowing to distinguish between TDC and the other types of longitudinal cracks observed and 2) based on the developed criteria, to quantify TDC in Italian motorway pavements. In this regard, a 200 km long trial network (400 km considering both directions) was studied, taking into account the effect of several variables (e.g. geometric characteristics, traffic level, wearing layer type and climate). For this purpose, images of the trial network acquired during pavement monitoring were visually analysed and some control cores were taken. Specific criteria (which can be used in a pavement management system, PMS) were developed to distinguish between the main types of longitudinal cracks observed on the trial network, i.e. TDC, cracks due to heavy vehicles tire blowout and construction joints, based on their geometric features on the pavement surface. It was found that TDC can affect up to 20–30 % of the slow traffic lane. Specifically, the highest TDC concentrations were observed for high traffic levels and OGFC, whereas TDC was absent in the case of a dense-graded wearing layer. Finally, surprisingly the concentration of tire blowout cracks was even higher than TDC. This study provides evidence on the fact that, for thick pavements with OGFC, TDC has to be considered a priority problem to be addressed in both pavement design and maintenance

    Holo-BLSD – A holographic tool for self-training and self-evaluation of emergency response skills

    Get PDF
    In case of cardiac arrest, prompt intervention of bystanders can be vital in saving lives. Basic Life Support and Defibrillation (BLSD) is a procedure designed to deliver a proficient emergency first response. Developing skills in BLSD in a large part of the population is a primary educational goal of resuscitation medicine. In this context, novel computer science technologies like Augmented Reality (AR) and Virtual Reality (VR) can alleviate some of the drawbacks of traditional instructor-led courses, especially concerning time and cost constraints. This paper presents Holo-BLSD, an AR system that allows users to learn and train the different operations involved in BLSD and receive an automatic assessment. The system uses a standard manikin which is quotes{augmented} by an interactive virtual environment that reproduces realistic emergency scenarios. The proposed approach has been validated through a user study. Subjective results confirmed the usability of the devised tool and its capability to stimulate learners' attention. Objective results indicated no statistical significance in the differences between the examiners' evaluation of users who underwent traditional and AR training; they also showed a close agreement between expert and automatic assessments, suggesting that Holo-BLSD can be regarded as an effective self-learning method and a reliable self-evaluation tool

    Wearable proximity sensors for monitoring a mass casualty incident exercise: a feasibility study

    Full text link
    Over the past several decades, naturally occurring and man-made mass casualty incidents (MCI) have increased in frequency and number, worldwide. To test the impact of such event on medical resources, simulations can provide a safe, controlled setting while replicating the chaotic environment typical of an actual disaster. A standardised method to collect and analyse data from mass casualty exercises is needed, in order to assess preparedness and performance of the healthcare staff involved. We report on the use of wearable proximity sensors to measure proximity events during a MCI simulation. We investigated the interactions between medical staff and patients, to evaluate the time dedicated by the medical staff with respect to the severity of the injury of the victims depending on the roles. We estimated the presence of the patients in the different spaces of the field hospital, in order to study the patients' flow. Data were obtained and collected through the deployment of wearable proximity sensors during a mass casualty incident functional exercise. The scenario included two areas: the accident site and the Advanced Medical Post (AMP), and the exercise lasted 3 hours. A total of 238 participants simulating medical staff and victims were involved. Each participant wore a proximity sensor and 30 fixed devices were placed in the field hospital. The contact networks show a heterogeneous distribution of the cumulative time spent in proximity by participants. We obtained contact matrices based on cumulative time spent in proximity between victims and the rescuers. Our results showed that the time spent in proximity by the healthcare teams with the victims is related to the severity of the patient's injury. The analysis of patients' flow showed that the presence of patients in the rooms of the hospital is consistent with triage code and diagnosis, and no obvious bottlenecks were found

    Benthic foraminiferal assemblages and rhodolith facies evolution in post-LGM sediments from the Pontine Archipelago shelf (Central Tyrrhenian Sea, Italy)

    Get PDF
    The seabed of the Pontine Archipelago (Tyrrhenian Sea) insular shelf is peculiar as it is characterized by a mixed siliciclastic–carbonate sedimentation. In order to reconstruct the Late Quaternary paleoenvironmental evolution of the Pontine Archipelago, this study investigates the succession of facies recorded by two sediment cores. For this purpose, benthic foraminifera and rhodoliths assemblages were considered. The two cores (post-Last Glacial Maximum in age) were collected at 60 (CS1) and 122 m (Caro1) depth on the insular shelf off Ponza Island. The paleontological data were compared with seismo-stratigraphic and lithological evidence. The cores show a deepening succession, with a transition from a basal rhodolith-rich biodetritic coarse sand to the surface coralline-barren silty sand. This transition is more evident along core Caro1 (from the bottom to the top), collected at a deeper water depth than CS1. In support of this evidence, along Caro1 was recorded a fairly constant increase in the amount of planktonic foraminiferal and a marked change in benthic foraminiferal assemblages (from Asterigerinata mamilla and Lobatula lobatula assemblage to Cassidulina carinata assemblage). Interestingly, the dating of the Caro1 bottom allowed us to extend to more than 13,000 years BP the rhodolith record in the Pontine Archipelago, indicating the possible presence of an active carbonate factory at that time

    Study of a constrained finite element elbow prosthesis: the influence of the implant placement

    Get PDF
    BackgroundThe functional results of total elbow arthroplasty (TEA) are controversial and the medium- to long-term revision rates are relatively high. The aim of the present study was to analyze the stresses of TEA in its classic configuration, identify the areas of greatest stress in the prosthesis-bone-cement interface, and evaluate the most wearing working conditions.Materials and methodsBy means of a reverse engineering process and using a 3D laser scanner, CAD (computer-aided drafting) models of a constrained elbow prosthesis were acquired. These CAD models were developed and their elastic properties, resistance, and stresses were studied through finite element analysis (finite element method-FEM). The obtained 3D elbow-prosthesis model was then evaluated in cyclic flexion-extension movements (> 10 million cycles). We highlighted the configuration of the angle at which the highest stresses and the areas most at risk of implant mobilization develop. Finally, we performed a quantitative study of the stress state after varying the positioning of the stem of the ulnar component in the sagittal plane by +/- 3 degrees.ResultsThe greatest von Mises stress state in the bone component for the 90 degrees working configuration was 3.1635 MPa, which occurred in the most proximal portion of the humeral blade and in the proximal middle third of the shaft. At the ulnar level, peaks of 4.1763 MPa were recorded at the proximal coronoid/metaepiphysis level. The minimum elastic resistance and therefore the greatest stress states were recorded in the bone region at the apex of the ulnar stem (0.001967 MPa). The results of the analysis for the working configurations at 0 degrees and 145 degrees showed significant reductions in the stress states for both prosthetic components; similarly, varying the positioning of the ulnar component at 90 degrees (- 3 degrees in the sagittal plane, 0 degrees in the frontal plane) resulted in better working conditions with a greater resulting developed force and a lower stress peak in the ulnar cement.ConclusionThe areas of greatest stress occur in specific regions of the ulnar and humeral components at the bone-cement-prosthesis interface. The heaviest configuration in terms of stresses was when the elbow was flexed at 90 degrees. Variations in the positioning in the sagittal plane can mechanically affect the movement, possibly resulting in longer survival of the implant.Level of evidence:

    Impact of the Donor KIR Genotype on the Clinical Outcome of Hematopoietic Stem Cell Unrelated Transplants: A Single Center Experience

    Get PDF
    In recent years, the anti-leukemic potential of Natural Killer (NK) cells and their role in hematologic malignancies and in Hematopoietic Stem Cell Transplants (HSCT) has attracted greater interest and a recent study by Cooley S. et al. showed a better clinical outcome when patients with Acute Myeloid Leukemia received a transplant from unrelated Group B KIR haplotypes donors. As a consequence of these results, an algorithm called “KIR B-content score” was formulated. The aim of our research is a retrospective analysis of HSC unrelated transplants performed in our center to analyze the effect of the donor KIR B status on the clinical-outcome. Our results showed a better overall survival-rate in the AML recipients, HLA mismatched with the donor, when the donor KIR B content status is Best/Better (37% vs 18% at three years P=0,028). Moreover, we observed that AML recipients, whose Donors KIR B status was Best/Better, had more incidence of aGvHD grade I and II than patients whose Donors KIR B status was Neutral (70% vs 26%) and also a lower rate of relapse (36% vs 58%) and a better Disease Free Survival-rate (58% vs 38% at three years P=0,1) because of a better GvL effect
    corecore