6,557 research outputs found

    Internal Friction and Vulnerability of Mixed Alkali Glasses

    Full text link
    Based on a hopping model we show how the mixed alkali effect in glasses can be understood if only a small fraction c_V ofthe available sites for the mobile ions is vacant. In particular, we reproduce the peculiar behavior of the internal friction and the steep fall (''vulnerability'') of the mobility of the majority ion upon small replacements by the minority ion. The single and mixed alkali internal friction peaks are caused by ion-vacancy and ion-ion exchange processes. If c_V is small, they can become comparable in height even at small mixing ratios. The large vulnerability is explained by a trapping of vacancies induced by the minority ions. Reasonable choices of model parameters yield typical behaviors found in experiments.Comment: 4 pages, 4 figure

    Pyruvate Formate Lyase and Acetate Kinase are Essential for Anaerobic Growth of \u3cem\u3eEscherichia coli\u3c/em\u3e on Xylose

    Get PDF
    During anaerobic growth of bacteria, organic intermediates of metabolism, such as pyruvate or its derivatives, serve as electron acceptors to maintain the overall redox balance. Under these conditions, the ATP needed for cell growth is derived from substrate-level phosphorylation. In Escherichia coli, conversion of glucose to pyruvate yields 2 net ATPs, while metabolism of a pentose, such as xylose, to pyruvate only yields 0.67 net ATP per xylose due to the need for one (each) ATP for xylose transport and xylulose phosphorylation. During fermentative growth, E. coli produces equimolar amounts of acetate and ethanol from two pyruvates, and these reactions generate one additional ATP from two pyruvates (one hexose equivalent) while still maintaining the overall redox balance. Conversion of xylose to acetate and ethanol increases the net ATP yield from 0.67 to 1.5 per xylose. An E. coli pfl mutant lacking pyruvate formate lyase cannot convert pyruvate to acetyl coenzyme A, the required precursor for acetate and ethanol production, and could not produce this additional ATP. E. coli pfl mutants failed to grow under anaerobic conditions in xylose minimal medium without any negative effect on their survival or aerobic growth. An ackA mutant, lacking the ability to generate ATP from acetyl phosphate, also failed to grow in xylose minimal medium under anaerobic conditions, confirming the need for the ATP produced by acetate kinase for anaerobic growth on xylose. Since arabinose transport by AraE, the low-affinity, high-capacity, arabinose/H+ symport, conserves the ATP expended in pentose transport by the ABC transporter, both pfl and ackA mutants grew anaerobically with arabinose. AraE-based xylose transport, achieved after constitutively expressing araE, also supported the growth of the pfl mutant in xylose minimal medium. These results suggest that a net ATP yield of 0.67 per pentose is only enough to provide for maintenance energy but not enough to support growth of E. coli in minimal medium. Thus, pyruvate formate lyase and acetate kinase are essential for anaerobic growth of E. coli on xylose due to energetic constraints

    Identification of antischistosomal leads by evaluating peroxides of beta-dicarbonyl compounds and their heteroanalogs : bridged 1,2,4,5-tetraoxanes and alphaperoxides, and beta,delta-triketones: tricyclic monoperoxides

    Get PDF
    Although antischistosomal properties of peroxides were studied in recent years, systematic structure-activity relationships have not been conducted. We evaluated the antischistosomal potential of 64 peroxides belonging to bridged 1,2,4,5-tetraoxanes, alphaperoxides and beta,delta-triketones. Thirty-nine compounds presented IC50 values > 15 microM on newly transformed schistosomula. Active drugs featured phenyl-, adamantane- or alkyl residues at the methylene bridge. Lower susceptibility was documented on adult schistosomes, with most hit compounds being tricyclic monoperoxides (IC50: 7.7-13.4 microM). A bridged 1,2,4,5-tetraoxane characterized by an adamantane residue showed the highest activity (IC50: 0.3 microM) on adult Schistosoma mansoni. Studies with hemin and heme supplemented medium indicated that antischistosomal activation of peroxides is not necessarily triggered by iron porphyrins. Two compounds (tricyclic monoperoxide; bridged 1,2,4,5-tetraoxane) revealed high worm burden reductions in the chronic (WBR: 75.4-82.8 %) but only moderate activity in the juvenile (WBR:18.9-43.1%) S. mansoni mouse model. Our results might serve as starting point for the preparation and evaluation of related derivative

    Identifying dynamical modules from genetic regulatory systems: applications to the segment polarity network

    Get PDF
    BACKGROUND It is widely accepted that genetic regulatory systems are 'modular', in that the whole system is made up of smaller 'subsystems' corresponding to specific biological functions. Most attempts to identify modules in genetic regulatory systems have relied on the topology of the underlying network. However, it is the temporal activity (dynamics) of genes and proteins that corresponds to biological functions, and hence it is dynamics that we focus on here for identifying subsystems. RESULTS Using Boolean network models as an exemplar, we present a new technique to identify subsystems, based on their dynamical properties. The main part of the method depends only on the stable dynamics (attractors) of the system, thus requiring no prior knowledge of the underlying network. However, knowledge of the logical relationships between the network components can be used to describe how each subsystem is regulated. To demonstrate its applicability to genetic regulatory systems, we apply the method to a model of the Drosophila segment polarity network, providing a detailed breakdown of the system. CONCLUSION We have designed a technique for decomposing any set of discrete-state, discrete-time attractors into subsystems. Having a suitable mathematical model also allows us to describe how each subsystem is regulated and how robust each subsystem is against perturbations. However, since the subsystems are found directly from the attractors, a mathematical model or underlying network topology is not necessarily required to identify them, potentially allowing the method to be applied directly to experimental expression data

    Using AI/ML to predict blending performance and process sensitivity for Continuous Direct Compression (CDC)

    Get PDF
    Utilising three artificial intelligence (AI)/machine learning (ML) tools, this study explores the prediction of fill level in inclined linear blenders at steady state by mapping a wide range of bulk powder characteristics to processing parameters. Predicting fill levels enables the calculation of blade passes (strain), known from existing literature to enhance content uniformity. We present and train three AI/ML models, each demonstrating unique predictive capabilities for fill level. These models collectively identify the following rank order of feature importance: RPM, Mixing Blade Region (MB) size, Wall Friction Angle (WFA), and Feed Rate (FR). Random Forest Regression, a machine learning algorithm that constructs a multitude of decision trees at training time and outputs the mode of the classes (classification) or mean prediction (regression) of the individual trees, develops a series of individually useful decision trees. but also allows the extraction of logic and breakpoints within the data. A novel tool which utilises smart optimisation and symbolic regression to model complex systems into simple, closed-form equations, is used to build an accurate reduced-order model. Finally, an Artificial Neural Network (ANN), though less interrogable emerges as the most accurate fill level predictor, with an r2 value of 0.97. Following training on single-component mixtures, the models are tested with a four-component powdered paracetamol formulation, mimicking an existing commercial drug product. The ANN predicts the fill level of this formulation at three RPMs (250, 350 and 450) with a mean absolute error of 1.4%. Ultimately, the modelling tools showcase a framework to better understand the interaction between process and formulation. The result of this allows for a first-time-right approach for formulation development whilst gaining process understanding from fewer experiments. Resulting in the ability to approach risk during product development whilst gaining a greater holistic understanding of the processing environment of the desired formulation.</p

    Diversity of Lactase Persistence Alleles in Ethiopia:Signature of a Soft Selective Sweep

    Get PDF
    The persistent expression of lactase into adulthood in humans is a recent genetic adaptation that allows the consumption of milk from other mammals after weaning. In Europe, a single allele (-13910(∗)T, rs4988235) in an upstream region that acts as an enhancer to the expression of the lactase gene LCT is responsible for lactase persistence and appears to have been under strong directional selection in the last 5,000 years, evidenced by the widespread occurrence of this allele on an extended haplotype. In Africa and the Middle East, the situation is more complicated and at least three other alleles (-13907(∗)G, rs41525747; -13915(∗)G, rs41380347; -14010(∗)C, rs145946881) in the same LCT enhancer region can cause continued lactase expression. Here we examine the LCT enhancer sequence in a large lactose-tolerance-tested Ethiopian cohort of more than 350 individuals. We show that a further SNP, -14009T>G (ss 820486563), is significantly associated with lactose-digester status, and in vitro functional tests confirm that the -14009(∗)G allele also increases expression of an LCT promoter construct. The derived alleles in the LCT enhancer region are spread through several ethnic groups, and we report a greater genetic diversity in lactose digesters than in nondigesters. By examining flanking markers to control for the effects of mutation and demography, we further describe, from empirical evidence, the signature of a soft selective sweep

    Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    Get PDF
    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 °C and pH 5.0 and ferments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 °C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemicellulose. This bacterium is also considered as a potential probiotic. Complete genome sequence of a representative strain, B. coagulans strain 36D1, is presented and discussed

    The pd <--> pi+ t reaction around the Delta resonance

    Full text link
    The pd pi+ t process has been calculated in the energy region around the Delta-resonance with elementary production/absorption mechanisms involving one and two nucleons. The isobar degrees of freedom have been explicitly included in the two-nucleon mechanism via pi-- and rho-exchange diagrams. No free parameters have been employed in the analysis since all the parameters have been fixed in previous studies on the simpler pp pi+ d process. The treatment of the few-nucleon dynamics entailed a Faddeev-based calculation of the reaction, with continuum calculations for the initial p-d state and accurate solutions of the three-nucleon bound-state equation. The integral cross-section was found to be quite sensitive to the NN interaction employed while the angular dependence showed less sensitivity. Approximately a 4% effect was found for the one-body mechanism, for the three-nucleon dynamics in the p-d channel, and for the inclusion of a large, possibly converged, number of three-body partial states, indicating that these different aspects are of comparable importance in the calculation of the spin-averaged observables.Comment: 40 Pages, RevTex, plus 5 PostScript figure
    corecore