14 research outputs found

    Heme Exporter FLVCR1a Regulates Heme Synthesis and Degradation and Controls Activity of Cytochromes P450

    Get PDF
    Background & AimsThe liver has one of the highest rates of heme synthesis of any organ. More than 50% of the heme synthesized in the liver is used for synthesis of P450 enzymes, which metabolize exogenous and endogenous compounds that include natural products, hormones, drugs, and carcinogens. Feline leukemia virus subgroup C cellular receptor 1a (FLVCR1a) is plasma membrane heme exporter that is ubiquitously expressed and controls intracellular heme content in hematopoietic lineages. We investigated the role of Flvcr1a in liver function in mice.MethodsWe created mice with conditional disruption of Mfsd7b, which encodes Flvcr1a, in hepatocytes (Flvcr1a fl/fl;alb-cre mice). Mice were analyzed under basal conditions, after phenylhydrazine-induced hemolysis, and after induction of cytochromes P450 synthesis. Livers were collected and analyzed by histologic, quantitative real-time polymerase chain reaction, and immunoblot analyses. Hepatic P450 enzymatic activities were measured.ResultsFlvcr1afl/fl;alb-cre mice accumulated heme and iron in liver despite up-regulation of heme oxygenase 1, ferroportin, and ferritins. Hepatic heme export activity of Flvcr1a was closely associated with heme biosynthesis, which is required to sustain cytochrome induction. Upon cytochromes P450 stimulation, Flvcr1afl/fl;alb-cre mice had reduced cytochrome activity, associated with accumulation of heme in hepatocytes. The expansion of the cytosolic heme pool in these mice was likely responsible for the early inhibition of heme synthesis and increased degradation of heme, which reduced expression and activity of cytochromes P450.ConclusionsIn livers of mice, Flvcr1a maintains a free heme pool that regulates heme synthesis and degradation as well as cytochromes P450 expression and activity. These findings have important implications for drug metabolism

    Data demonstrating the anti-oxidant role of hemopexin in the heart

    Get PDF
    The data presented in this article are related to the research article entitled Hemopexin counteracts systolic dysfunction induced by heme-driven oxidative stress (G. Ingoglia, C. M. Sag, N. Rex, L. De Franceschi, F. Vinchi, J. Cimino, S. Petrillo, S. Wagner, K. Kreitmeier, L. Silengo, F. Altruda, L. S. Maier, E. Hirsch, A. Ghigo and E. Tolosano, 2017) [1]. Data show that heme induces reactive oxygen species (ROS) production in primary cardiomyocytes. H9c2 myoblastic cells treated with heme bound to human Hemopexin (Hx) are protected from heme accumulation and oxidative stress. Similarly, the heme-driven oxidative response is reduced in primary cardiomyocytes treated with Hx-heme compared to heme alone. Our in vivo data show that mouse models of hemolytic disorders, β-thalassemic mice and phenylhydrazine-treated mice, have low serum Hx associated to enhanced expression of heme- and oxidative stress responsive genes in the heart. Hx-/- mice do not show signs of heart fibrosis or overt inflammation. For interpretation and discussion of these data, refer to the research article referenced above. Keywords: Heme, Hemopexin, Heart, Oxidative stres

    Acute Hemolysis and Heme Suppress Anti-CD40 Antibody-Induced Necro-Inflammatory Liver Disease

    Get PDF
    Clearance of red blood cells and hemoproteins is a key metabolic function of macrophages during hemolytic disorders and following tissue injury. Through this archetypical phagocytic function, heme is detoxified and iron is recycled to support erythropoiesis. Reciprocal interaction of heme metabolism and inflammatory macrophage functions may modify disease outcomes in a broad range of clinical conditions. We hypothesized that acute hemolysis and heme induce acute anti-inflammatory signals in liver macrophages. Using a macrophage-driven model of sterile liver inflammation, we showed that phenylhydrazine (PHZ)-mediated acute erythrophagocytosis blocked the anti-CD40 antibody-induced pathway of macrophage activation. This process attenuated the inflammatory cytokine release syndrome and necrotizing hepatitis induced by anti-CD40 antibody treatment of mice. We further established that administration of heme-albumin complexes specifically delivered heme to liver macrophages and replicated the anti-inflammatory effect of hemolysis. The anti-inflammatory heme-signal was induced in macrophages by an increased intracellular concentration of the porphyrin independently of iron. Overall, our work suggests that induction of heme-signaling strongly suppresses inflammatory macrophage function, providing protection against sterile liver inflammation

    Agonistic Anti-CD40 Antibody Triggers an Acute Liver Crisis With Systemic Inflammation in Humanized Sickle Cell Disease Mice

    Get PDF
    Sickle cell disease (SCD) is an inherited hemolytic disorder, defined by a point mutation in the β-globin gene. Stress conditions such as infection, inflammation, dehydration, and hypoxia trigger erythrocyte sickling. Sickled red blood cells (RBCs) hemolyze more rapidly, show impaired deformability, and increased adhesive properties to the endothelium. In a proinflammatory, pro-coagulative environment with preexisting endothelial dysfunction, sickled RBCs promote vascular occlusion. Hepatobiliary involvement related to the sickling process, such as an acute sickle hepatic crisis, is observed in about 10% of acute sickle cell crisis incidents. In mice, ligation of CD40 with an agonistic antibody leads to a macrophage activation in the liver, triggering a sequence of systemic inflammation, endothelial cell activation, thrombosis, and focal ischemia. We found that anti-CD40 antibody injection in sickle cell mice induces a systemic inflammatory and hemodynamic response with accelerated hemolysis, extensive vaso-occlusion, and large ischemic infarctions in the liver mimicking an acute hepatic crisis. Administration of the tumor necrosis factor-α (TNF-α) blocker, etanercept, and the heme scavenger protein, hemopexin attenuated end-organ damage. These data collectively suggest that anti-CD40 administration offers a novel acute liver crisis model in humanized sickle mice, allowing for evaluation of therapeutic proof-of-concept

    Hemolysis transforms liver macrophages into anti-inflammatory erythrophagocytes

    Full text link
    During hemolysis, macrophages in the liver phagocytose damaged erythrocytes to prevent the toxic effects of cell-free hemoglobin and heme. It remains unclear how this homeostatic process modulates phagocyte functions in inflammatory diseases. Using a genetic mouse model of spherocytosis and single-cell RNA sequencing, we found that erythrophagocytosis skewed liver macrophages into a unique anti-inflammatory phenotype that we defined as Marcohigh/Hmoxhigh/MHC-class IIlow erythrophagocytes. This phenotype transformation profoundly mitigated disease expression in a model of an anti-CD40-induced hyperinflammatory syndrome with necrotic hepatitis and in a non-alcoholic steatohepatitis model, representing two macrophage-driven sterile inflammatory diseases. We reproduced the anti-inflammatory erythrophagocyte transformation in vitro by heme-exposure of mouse and human macrophages, yielding a distinctive transcriptional signature that segregated heme-polarized from M1- and M2-polarized cells. Mapping transposase-accessible chromatin in single cells by sequencing (scATAC-seq) defined the transcription factor NFE2L2/NRF2 as a critical driver of erythrophagocytes, and Nfe2l2/Nrf2-deficiency restored heme-suppressed inflammation. Our findings point to a pathway that regulates macrophage functions to link erythrocyte homeostasis with innate immunity

    Line-selective macrophage activation with an anti-CD40 antibody drives a hemophagocytic syndrome in mice

    Full text link
    Hemophagocytic syndromes comprise a cluster of hyperinflammatory disorders, including hemophagocytic lymphohistiocytosis and macrophage activation syndrome. Overwhelming macrophage activation has long been considered a final common pathway in the pathophysiology of hemophagocytic syndromes leading to the characteristic cytokine storm, laboratory abnormalities, and organ injuries that define the clinical spectrum of the disease. So far, it is unknown whether primary macrophage activation alone can induce the disease phenotype. In this study, we established a novel mouse model of a hemophagocytic syndrome by treating mice with an agonistic anti-CD40 antibody (Ab). The response in wild-type mice is characterized by a cytokine storm, associated with hyperferritinemia, high soluble CD25, erythrophagocytosis, secondary endothelial activation with multiple organ vaso-occlusion, necrotizing hepatitis, and variable cytopenias. The disease is dependent on a tumor necrosis factor-α-interferon-γ-driven amplification loop. After macrophage depletion with clodronate liposomes or in mice with a macrophage-selective deletion of the CD40 gene (CD40flox/flox/LysMCre), the disease was abolished. These data provide a new preclinical model of a hemophagocytic syndrome and reinforce the key pathophysiological role of macrophages

    The oral ferroportin inhibitor vamifeport improved hemodynamics in a mouse model of sickle cell disease

    Full text link
    Sickle cell disease (SCD) is an inherited hemolytic anemia caused by a single point mutation in the beta‑globin gene of hemoglobin that leads to synthesis of sickle hemoglobin (HbS) in red blood cells (RBCs). HbS polymerizes in hypoxic conditions, leading to intravascular hemolysis, release of free hemoglobin and heme, and increased adhesion of blood cells to endothelial vasculature, which causes painful vaso-occlusion and organ damage. HbS polymerization kinetics are strongly dependent on the intracellular HbS concentration; a relatively small reduction in cellular HbS concentration may prevent HbS polymerization and its sequelae. We hypothesized that iron restriction via blocking ferroportin, the unique iron transporter in mammals, might reduce HbS concentration in RBCs, thereby decreasing hemolysis, improving blood flow, and preventing vaso-occlusive events. Indeed, vamifeport (also known as VIT-2763), a clinical-stage oral ferroportin inhibitor, reduced hemolysis markers in the Townes model of SCD. The RBC indices of vamifeport-treated male and female Townes (HbSS) mice showed changes attributable to iron-restricted erythropoiesis: decreased corpuscular hemoglobin concentration mean and mean corpuscular volume, as well as increased hypochromic and microcytic RBC fractions. Furthermore, vamifeport reduced plasma soluble vascular cell adhesion molecule-1 concentrations, which suggests lowered vascular inflammation. Accordingly, intravital video microscopy of fluorescently labeled blood cells in the microvasculature of Townes mice treated with vamifeport demonstrated diminished adhesion to the endothelium and improved hemodynamics. These preclinical data provide a strong proof-of-concept for vamifeport in the Townes model of SCD and support further development of this compound as a potential novel therapy in SCD

    Hemopexin counteracts systolic dysfunction induced by heme-driven oxidative stress

    Get PDF
    Heart failure is a leading cause of morbidity and mortality in patients affected by different disorders associated to intravascular hemolysis. The leading factor is the presence of pathologic amount of pro-oxidant free heme in the bloodstream, due to the exhaustion of the natural heme scavenger Hemopexin (Hx). Here, we evaluated whether free heme directly affects cardiac function, and tested the therapeutic potential of replenishing serum Hx for increasing serum heme buffering capacity. The effect of heme on cardiac function was assessed in vitro, on primary cardiomyocytes and H9c2 myoblast cell line, and in vivo, in Hx(-/-) mice and in genetic and acquired mouse models of intravascular hemolysis. Purified Hx or anti-oxidants N-Acetyl-L-cysteine and a-tocopherol were used to counteract heme cardiotoxicity. In mice, Hx loss/depletion resulted in heme accumulation and enhanced reactive oxygen species (ROS) production in the heart, which ultimately led to severe systolic dysfunction. Similarly, high ROS reduced systolic Ca2+ transient amplitudes and fractional shortening in primary cardiomyocytes exposed to free heme. In keeping with these Ca2+ handling alterations, oxidation and CaMKII-dependent phosphorylation of Ryanodine Receptor 2 were higher in Hx(-/-) hearts than in controls. Administration of anti-oxidants prevented systolic failure both in vitro and in vivo. Intriguingly, Hx rescued contraction defects of heme-treated cardiomyocytes and preserved cardiac function in hemolytic mice. We show that heme-mediated oxidative stress perturbs cardiac Ca2+ homeostasis and promotes contractile dysfunction. Scavenging heme, Hx counteracts cardiac heme toxicity and preserves left ventricular function. Our data generate the rationale to consider the therapeutic use of Hx to limit the cardiotoxicity of free heme in hemolytic disorders
    corecore