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Sickle cell disease (SCD) is an inherited hemolytic disorder, defined by a point mutation in

the b-globin gene. Stress conditions such as infection, inflammation, dehydration, and

hypoxia trigger erythrocyte sickling. Sickled red blood cells (RBCs) hemolyze more rapidly,

show impaired deformability, and increased adhesive properties to the endothelium. In a

proinflammatory, pro-coagulative environment with preexisting endothelial dysfunction,

sickled RBCs promote vascular occlusion. Hepatobiliary involvement related to the

sickling process, such as an acute sickle hepatic crisis, is observed in about 10% of

acute sickle cell crisis incidents. In mice, ligation of CD40 with an agonistic antibody leads

to a macrophage activation in the liver, triggering a sequence of systemic inflammation,

endothelial cell activation, thrombosis, and focal ischemia. We found that anti-CD40

antibody injection in sickle cell mice induces a systemic inflammatory and hemodynamic

response with accelerated hemolysis, extensive vaso-occlusion, and large ischemic

infarctions in the liver mimicking an acute hepatic crisis. Administration of the tumor

necrosis factor-a (TNF-a) blocker, etanercept, and the heme scavenger protein,

hemopexin attenuated end-organ damage. These data collectively suggest that anti-

CD40 administration offers a novel acute liver crisis model in humanized sickle mice,

allowing for evaluation of therapeutic proof-of-concept.
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INTRODUCTION

Sickle cell disease (SCD) is a monogenic autosomal recessive disorder defined by a missense mutation

in the b-globin gene, forming the sickle hemoglobin (HbS) (1). Affecting nearly 300’000 newborns per

year with the highest prevalence in sub-Saharan Africa, India, and the Mediterranean and Middle East
regions, SCD imposes a considerable global health burden (2, 3). The substitution of glutamic acid with

the hydrophobic amino acid valine at position 6 in the b-globin gene causes erythrocyte hemoglobin to
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polymerize and facilitate red blood cells (RBCs) sickling under

deoxygenation (4). Sickled RBCs demonstrate abnormally adhesive

properties and impaired deformability (5). As a result, damaged

erythrocytes hemolyse and release hemoglobin into the circulation

promoting NO-scavenging, oxidative damage, iron overload, and

organ dysfunction (6–8).
The term “sickle cell crisis” summarizes clinically heterogeneous

acute disease complications such as vascular-occlusive crisis,

hemolytic crisis, sequestration syndrome with enlargement of

liver and spleen and, aplastic or hypoplastic crisis (1, 9). It is

associated with life-threatening conditions such as acute chest

syndrome (ACS), stroke, avascular necrosis, renal dysfunction,
aplastic, and splenic sequestration crisis. Known inciting factors

for a sickle crisis are hypoxia, dehydration, stress, and infection (10,

11). The sequelae of aggravated hemolysis, hypercoagulability and,

increased adhesion of RBCs, leukocytes, and platelets to the

endothelium aggravate local hypoxia and result in vaso-occlusive

crisis (VOC) and end-organ ischemia (1, 7, 12, 13).
Humanized sickle mice have been developed for preclinical

studies of SCD. The Berkeley mouse model has targeted deletions

of murine a and b globins that are compensated by a transgene

containing human a, g, and bS globin (14). Phenotype similarities

to human SCD are erythrocyte sickling, extravascular and

intravascular hemolysis, severe anemia, and multiorgan infarcts

mainly reported in liver, kidney, and spleen (14, 15). Hypoxia-
reoxygenation, systemic administration of lipopolysaccharides

(LPS) or tumor necrosis factor-a (TNF-a) have been used in

preceding studies to induce acute vaso-occlusion and sickle crisis in

murine models of SCD (13, 16–21). These models allow for the

study of vaso-occlusion within the microcirculation; however, all

these models have significant limitations such as high variability,
animal welfare considerations (e.g., dehydration-triggered crisis),

or poorly defined pathophysiological pathways.

CD40 belongs to the tumor necrosis factor receptor (TNF-R)

superfamily and is mainly expressed on B-cells and antigen-

presenting cells (22) (23). The CD40 transduced signal activates

the canonical NFkB-pathway and comprises a key pathway of

immune cell communication (24). Soluble CD40 ligand
(sCD40L) is elevated in SCD and increases during a crisis and

in patients with acute chest syndrome (25–27). The CD40-

CD40L pathway may contribute to the chronic inflammatory

state of SCD as well as to the initiation and propagation of sickle

crisis. In this study, we found that activation of CD40 signaling

by agonistic anti-CD40 antibody in Berkeley SCD mice leads to
an acute and phenotypically distinct disease state with systemic

inflammation, severe vaso-occlusive liver disease, and right heart

dysfunction. As a validation of our model, we found that the

treatment of SCD mice with the TNF-a blocker etanercept or

plasma-derived human hemopexin significantly reduced anti-

CD40-induced acute inflammation and liver disease.

METHODS

Animal Model
Mice 12 to 16 weeks of age were used. The Berkeley sickle mice
with genotype (Tg(Hu-miniLCR a1GgAgdbS) Hba0/0, Hbb0/0,

and hemizygous for Tg(HBA-HBBs)41Paz (non-sickling mice

from colony) were obtained from the Jackson Laboratory. All

mice were housed and bred under specific-pathogen-free

conditions in the Laboratory Animal Services Center (LASC)

of the University of Zurich.

All experimental protocols were reviewed and approved by
the Veterinary Office of the canton of Zurich. All animals were

maintained at the animal facility of the University of Zurich

(LSC) and were treated in accordance with guidelines of the

Swiss federal Veterinary Office.

Mouse Treatments
Mouse Anti-CD40 Antibody Treatment
Mice were treated intraperitoneally (i.p.) with 20 mg/kg of an

agonistic anti-CD40 antibody (InVivoMab, clone FGK4.5/

FGK45 BioXCell). 30 h after anti-CD40 antibody injection,

blood was removed by terminal heart puncture or blood

withdrawal from the vena cava inferior and liver tissue was

collected for histology or stored at - 80°C until further use.

Hemopexin and Etanercept Treatment
Mice were treated subcutaneously (s.c.) with 3 mg human

plasma-derived hemopexin (CSL Behring, batch TO342022B,

92 mg/ml) 5 days a week, for 3 weeks (a total of 17 injections)

before anti-CD40 treatment. Our studies (unpublished data)

have evaluated hemopexin at 50 mg/kg, 100 mg/kg and 300
mg/kg administered subcutaneously, three times per week. These

studies were conducted in Berkeley SCD mice with progressive

cardiopulmonary dysfunction. A dosing strategy of 300 mg/kg

hemopexin, subcutaneous, three times per week was the most

effective regimen to maintain a mean +/- SD steady state plasma

concentration of 3.30 +/- 0.85 mg/ml and correct disease

progression. To neutralize TNF-a, etanercept (Enbrel, 25mg/
0.5ml, Pfizer PAA044617, Lot W47929) 100mg/kg was injected

intraperitoneal (i.p.) on day 1, and 3 followed by anti-CD40

antibody 2 h after etanercept administration on day 3. Mice

were harvested 30 h after anti-CD40 injections. The dose of

etanercept used in this study is based on human equivalent

dosing recommendations.

Hepatic Enzyme Analysis
Alanine aminotransferase (ALT) and Bilirubin levels (Reflotron;

Roche) were measured from mice plasma after anti-CD40

antibody treatment. Plasma lactate dehydrogenase (LDH)

measurements were performed by the Veterinary Laboratory of

the University of Zurich.

Bio-Plex Cytokine Assays
Concentrations of cytokines and chemokines IL-6, IL-12p40,

CCL2 (MCP-1), CCL3 (MIP-1a), CCL4 (MIP-1b), TNF-a were

determined with Bio-Plex Cytokine Assays (Bio-Rad). sE-

selectin, ICAM, PAI-1, sP-selectin, and proMMP9 were

determined using Milliplex Map mouse cardiovascular disease
(CVD) Magnetic Bead Panel 1, Merck Millipore.

The assay was analyzed with a Bio-Plex 200 system (Bio-Rad).

The results were analyzed using Bio-Plex Data Pro software

(Bio-Rad).
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RT-qPCR
Real-time PCR was performed according to a standard workflow

on a 7500 Fast Real-Time PCR System (Applied Biosystems).

Primer Sequences (5’-3’)
Hprt1 forward: cctcctcagaccgcttttt, reverse: aacctggttcatcatcgctaa

Cd40 forward: aaggaacgagtcagactaatgtca, reverse:

agaaacaccccgaaaatggt

I l6 forward: gctaccaaactggatataatcagga , revever :

ccaggtagctatggtactccagaa

I l 1 2 b f o rwa r d : a g t t g a c g g a c c c c a a a a g , r e v e r s e :
agctggatgctctcatcagg

C c l 2 f o r w a r d : c a t c c a c g t g t t g g c t c a , r e v e r s e :

gatcatcttgctggtgaatgagt

C x c l 9 f o rw a r d : c t t t t c c t c t t g g g c a t c a t , r e v e r s e :

gcatcgtgcattccttatca

Cxcl10 forward: gctgccgtcattttctgc, reverse: tctcactggcccgtcatc

Tissue Iron Measurements
Kidney samples cut to a weight of 30–35 g were homogenized in

double deionized H2O at 1:10 wt/vol. Homogenates were mixed

with 500 ml of an acid mixture containing 1mM HCl and 10%

Trichloroacetic acid (TCA), and incubated at 50°C for 1 h with

intermittent shaking (28). The samples were then centrifuged at

15,000 × g for 15 min at room temperature. The clear
supernatant (90 ml) was mixed with 30 ml of 20 mg/ml

ascorbic acid followed by 20 ml of ferrozine (0.85% wt/vol in

hydroxylamine hydrochloride) (29). The samples were allowed

to completely develop for 30 min. The absorbance was

measured at 562 nm using the plate reader infinite M200 Pro

Tecan. A standard curve was generated using an iron standard
(500 mg/dl).

Cardiac Measurements
At the conclusion of the study, mice underwent terminal open

chest right ventricular (RV) function measurements with a 1.2F,

FTE-1212B-4018 pressure volume catheter (Transonic Systems

Inc., Ithaca, NY) inserted by direct cardiac puncture. Mice were

induced inhaled isoflurane (4%–5%), and tracheal incision
(~ 1 cm) was performed. Next, a tracheal tube was inserted

and connected to an Anesthesia Workstation or Hallowell EMC

Microvent and an anesthetic plain was maintained at 1.0%–2.5%

isoflurane in 100% oxygen. After which, a thoracotomy was

performed exposing the heart, the pericardium was resected and

a small hole made at the base of the RV with a 30g needle for
insertion of the pressure-volume catheter. Steady state

hemodynamics are collected with short pauses in ventilation

(up to 10 s) or high frequency oscillatory ventilation to eliminate

ventilator artifacts from the pressure-volume recordings.

Occlusions of the inferior vena cava were performed by

applying pressure to the inferior vena cava (up to 10 s)

through the abdominal opening. After pressure volume and
hemodynamic measurements were completed, mice were

humanely euthanized by exsanguination and cervical

dislocation. Data was recorded continuously using LabScribe2

and analyzed offline.

Nonparenchymal Liver Cell Isolation
Liver digestion was performed with a protocol modified from

Cabral et al. (30, 31). The abdominal cavity of a living, deeply
anesthetized mouse was opened, and the portal vein was

catheterized for in situ liver perfusion and digestion with

collagenase B buffered solution (Roche, 11088815001). The

livers were dissected and the mouse sacrificed. The digested

liver was mechanically disaggregated in a petri dish on ice and

filtered through a 100 mm cell strainer. The cell suspension was

centrifuged twice at 60 x g for 2 min at 4°C, and the pellets of
hepatocytes were discarded. The supernatant was then

centrifuged at 300 x g for 5 min at 4°C to obtain a pellet of

nonparenchymal liver cells, containing endothelial cells.

Nonparenchymal liver suspensions were filtered through a 70-

mm cell strainer (Sigma Aldrich, cat. n. CLS431751) and

centrifuged at 300 x g for 5 min and resuspended in the
FACS buffer.

Flow Cytometry Sample Preparation and
Analysis
Flow cytometry has been performed according to standard
protocols (32). Stained cells were analyzed using an

LSRFortessa (BD). Data was analyzed using FlowJo software.

Antibodies: Endothelial cells: Pacific Blue anti-CD45 (0.5

mg/ml, BioLegend 109820), FITC anti-CD102 (ICAM, 0.5 mg/

ml BD Pharmingen, 557444), APC anti-CD31 (PECAM, 0.2

mg/ml, BD Pharmingen 551262), PE anti-VCAM1 (0.2 mg/ml,

BioLegend 105714).

Histology
An Olympus IX71 microscope was used for macroscopic

photographs of fresh livers. Kidney and liver were fixed in 10%

formalin for 24 h and stored in 100% isopropanol. Tissue was

embedded in paraffin, and 2- to 5-mm sections were prepared.

Liver sections were stained with standard hematoxylin-eosin

(H/E) procedures.

Nonheme Iron Histopathology
Kidney sections were incubated with Perls iron reagent

containing 5% potassium ferrocyanide and 2% hydrochloric

acid for 45 min at room temperature and rinsed in deionized

water. Sections were then incubated with 0.3% hydrogen

peroxide and 0.01 M sodium azide in methanol for 30 min at
room temperature. All sections were then rinsed in 0.1 M PB, pH

7.4, washed in deionized water, and lightly counterstained with

Gill’s II hematoxylin (33). The stained sections were imaged

using a Zeiss Apotome.2 microscope.

Statistical Analysis
Data plotting and statistical analysis were performed with Prism

8 (GraphPad). Two-way hierarchical clustering analyses were
performed with the Ward algorithm as provided by JMP14

software (SAS). UMAP analysis was performed using BioVinci

(2.8.5). The following parameters were applied: decision tree:

Gini, cost complexity pruning: 0.04, number of neighbors: 15,

metric: euclidean, minimum distance between embedded points:
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0.1. For group comparisons of other data types, we used ANOVA

with Tukey’s post test as indicated in the figure legends. All data

points are displayed in the graphs.

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

RESULTS

Agonistic Anti-CD40 Antibody Triggers
Acute Vaso-Occlusive Hepatitis in Sickle
Cell Mice
We treated SCD (Hbb-/-) and wild-type (Hbb +/-) SCD mice

with a single intraperitoneal (i.p.) injection of an agonistic anti-

CD40 antibody. 30 h after injection, we observed extended areas
of white spots on the liver surface. These areas were indicative of

large necrosic zones with occlusive fibrin thrombi observed by

light microscopy of H&E stained liver sections (yellow dotted

line, Figure 1A). This liver pathology was accompanied by a

significant increase of liver enzymes and lactate dehydrogenase

(LDH) levels in the plasma, demonstrating an expected

pathophysiological response in this model (Figure 1B).
Gene expression of pro-inflammatory cytokines and myeloid

activating markers were markedly induced in the whole liver

RNA of anti-CD40-dosed SCD and WT mice (Figure 1C),

suggesting a strong immune activation.

Anti-CD40 Injection Aggravates Systemic
Inflammation and Endothelial Activation in
Sickle Cell Mice
To determine systemic inflammatory changes after anti-CD40
antibody treatment, we measured pro-inflammatory cytokines/

chemokines in plasma. As reflected by the hierarchical clustering

analyses in Figure 1D, we observed clear segregation of saline and

antibody-treated animals, which was indicative of a systemic

inflammatory response in the anti-CD40 dosed SCD andWTmice.

Endothelial cell activation is a hallmark of SCD pathology (34)
that precipitates the vaso-occlusive process. Endothelial cell

activation markers increased significantly in the plasma of anti-

CD40 dosed SCDmice compared to saline-treated animals (Figure

1E). Accordingly, flow cytometry of liver cell suspensions revealed

an upregulation of vascular cell adhesion molecule (VCAM-1) on

endothelial cells, confirming that anti-CD40-treatment ultimately

leads to an endothelial cell activation (Figure 1F).

Anti-CD40 Antibody Induces
Hyperhemolysis in Sickle Cell Mice
Accelerated hemolysis with hemoglobinuria is a key feature of

sickle crisis (6). Quantification of hemolysis in SCD is
confounded by RBC lysis during blood sampling. Therefore,

we have estimated the hemolytic activity by plasma bilirubin and

renal iron content, assuming that acute changes in renal iron

directly reflect hemoglobinuria and thus intravascular hemolysis.

Furthermore, we stained kidney sections with Perls reagent to

visualize the distribution of iron (35). Bilirubin levels and
kidney iron significantly increased following anti-CD40 dosing

(Figures 2A–2B). Perls staining revealed increased iron

deposition in the proximal tubules of anti-CD40 dosed SCD

mice compared to the vehicle dosed animals (Figure 2C).

Right Ventricular Dysfunction and Right
Heart Failure After Anti-CD40
Administration in Sickle Cell Mice
Aggravated hemolytic anemia, vaso-occlusion in the liver and

systemic inflammation occur after anti-CD40 dosing, prompting

us to consider cardiac changes associated with these effects. We

evaluated cardiac abnormalities using solid state catheter pressure-
volume measurements (PV loops). We measured PV loops of the

right ventricle (RV) 30 h after injection with either saline or anti-

CD40 antibody. We did not observe significant changes in either

right ventricular systolic pressures (RVSP), contractility (Ees), or

RV afterload (Ea). However, we noted a 35% decrease in cardiac

output and a corresponding rise in pulmonary vascular resistance,

suggesting anti-CD40 alters pulmonary vascular function acutely.
The RV to pulmonary artery vascular coupling ratio determined

by the fraction obtained from Ees/Ea describes the efficiency of

energy transfer between the RV and PA. Under normal conditions

this value remains between 1 and 2 (36). In the present study SCD

mice dosed with anti-CD40 demonstrated a suppressed Ees/Ea of

approximately 0.53 suggesting an acutely uncoupled and
inefficient RV (Figures 3A–3F).

Effects of TNF-a Blockade and Heme
Scavenging Following Anti-CD40 Exposure
in Sickle Cell Mice
Etanercerpt blocks the binding of TNF-a to the TNF receptor,

inhibiting its proinflammatory signaling (37). Hemopexin is the

primary heme scavenger protein in plasma, which irreversibly

binds and inactivates oxidative and proinflammatory activities of

cell-free heme (38, 39). Both molecules have shown to mitigate

inflammation and vaso-occlusion in SCDmice (40–43). To validate

our anti-CD40 antibody-induced vaso-occlusive liver disease as a
novel crisis model, we pretreated animals with etanercept or

plasma-derived hemopexin. The TNF-a blocker was injected i.p.

on day 1 and 3, followed on day 3 by anti-CD40 treatment.

Hemopexin was administered over 3 weeks subcutaneously (sc)

5 days a week prior to anti-CD40 administration to achieve steady-

state plasma concentration leading to an extended attenuation of
heme-toxicity. In parallel, we evaluated vehicle injected SCDmice as

experimental controls. To assess disease activity, transaminase levels

and proinflammatory biomarkers were measured in plasma. After

anti-CD40 dosing, ALT concentrations were significantly

attenuated in both hemopexin or etanercept pretreated animals

compared to vehicle controls (Figures 4A, B). These findings
indicate that TNF-a blockade and heme scavenging attenuate the

susceptibility to an anti-CD40 induced acute liver crisis.

Measurement of proinflammatory cytokines, chemokines and

macrophage-activating markers in plasma were broadly

suppressed in etanercept pretreated animals. This suppressive

effect on individual inflammatory markers was less pronounced

in SCDmice that received hemopexin prior to anti-CD40 dosing.
However, the hierarchical clustering and UMAP analysis shown

in Figures 4C, D clearly segregated the hemopexin treated
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animals in a distinct group with a less pronounced inflammatory
plasma signature.

DISCUSSION

The present study defines a novel murine model of

inflammation-induced hepatic crisis in sickle cell mice. In

response to agonistic anti-CD40 antibody treatment, sickle cell
mice developed an acute hepatitis with histological features of

vessel-occlusion and ischemia. The liver pathology was

accompanied by systemic inflammation, accelerated hemolysis,

and acute right heart dysfunction, recapitulating cardinal

characteristics of a sickle crisis (44). As further validation of

our model, we found that the treatment of sickle cell mice with
the TNF-a blocker etanercept or plasma-derived human

DC

A B E

F

FIGURE 1 | Vaso-occlusive hepatitis and systemic inflammation after anti-CD40 antibody treatment in sickle cell mice. (A) Photographs of representative liver lobes

(top panel) and histology image for H&E staining after treatment of sickle cell mouse with saline or anti-CD40 antibody. Images are taken 30 h after anti-CD40

antibody administration. Scale bar 10 mm and 100 µm, respectively. Dotted yellow line marks extended infarct area. (B) Plasma alanine transaminase (ALT) and

lactate dehydrogenase (LDH) concentrations in heterozygote (WT) and homozygote (SCD) Berkeley mice treated with saline or anti-CD40 (aCD40) antibody (groups;

for ALT WT saline n=12, WT aCD40 n=16, SCD saline n=12, SCD aCD40 n=19, for LDH n=5). (C) Hierarchical clustering analysis of the relative mRNA expression of

key inflammatory genes measured by RT-qPCR in whole liver of WT (blue) or SCD (red) mice treated or not with anti-CD40 antibody (white=low expression, red=high

expression) (n=6). (D) Hierarchical clustering analysis of plasma cytokines from saline and anti-CD40 antibody treated WT (blue) or SCD (red) mice (white=low

expression, red=high expression) (groups; saline n=5–7, aCD40 n=4–14). (E) Hierarchical clustering analysis of plasma soluble adhesion molecules, plasminogen

activator inhibitor 1 (PAI1), and matrix metalloproteinase-9 (pro MMP9) from saline and anti-CD40 treated sickle cell mice (white=low expression, red=high

expression) (groups; saline n=6, aCD40 n=10). (F) Flow cytometry histogram of nonparenchymal liver cell suspensions gated for VCAM-1 in saline or anti-CD40

treated sickle cell mice. The displayed cells were gated from live CD45-, CD31+, and CD102+ cells. Data are representative of three independent experiments. Each

data point represents a single mouse. ****p < 0.0001 for all panels. All comparisons between control (saline) and anti-CD40 dosed sickle cell mice were conducted

by a two-tailed student’s t -test with significance set at a significance of p < 0.05.
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hemopexin significantly reduced anti-CD40-induced acute

inflammation and liver necrosis. Collectively, our observations
suggest that anti-CD40 exposure induces an acute liver crisis in

sickle cell mice and that this model may be valuable to evaluate

potential therapeutics.

A defining feature of the present model is characterized by

vaso-occlusive necro-hepatitis leading to a massive increase in

liver enzymes mimicking acute hepatic crisis, occurring in

approximately 10% of patients with SCD (45). In wild-type

mice, treatment with an agonistic anti-CD40 antibody triggers

a hyperinflammatory syndrome with a cytokine storm and
limited liver toxicity (46). We have previously demonstrated

that CD40 ligation on liver macrophages initiates a

pathophysiological cascade of endothelial cell activation,

disseminated intravascular coagulation (DIC), vaso-occlusion,

resulting in liver ischemia. In wild-type mice, this sequence was

abolished in mice with a lineage-selective deletion of CD40

in macrophages.

BA C

FIGURE 2 | Accelerated hemolysis after anti-CD40 administration in sickle cell mice. (A) Plasma bilirubin in saline versus anti-CD40 treated sickle cell mice (groups;

saline n=8, aCD40 n=9). (B) Iron concentration measured by the ferrozine method in kidneys of saline versus anti-CD40 treated sickle cell mice (groups; saline n=8,

aCD40 n=16). (C) Representative histology images for Perls staining of kidney sections from saline and anti-CD40 treated sickle cell mice. Blue color represents non-

heme iron deposits, mainly seen in proximal tubules. Scale bar 50 µm. Each data point represents a single mouse. ** p<0.01, * p<0.05, all comparisons between

control (saline) and anti-CD40 dosed sickle cell mice were conducted by a two-tailed student’s t -test with significance set at a significance of p<0.05.

A

D

B

E F

C

FIGURE 3 | Hemodynamic changes after anti-CD40 administration in sickle cell mice. Cardiovascular parameters in sickle cell mice following saline (control) and

anti-CD40 antibody dosing. (A) RSVP - pulmonary arterial pressure (p=0.723, n=6). (B) CO - Cardiac Output (p= 0.0089**, n=6). (C) Ea - Right ventricular (RV)

afterload (p=0.0652, n=6). (D) Ees - end systolic elastance (p=0.2257, n=6). (E) Ees/Ea - RV to pulmonary artery (PA) coupling (RV-PA) (p=0.0069**, n=6). (F) RVSP/

CO - RV systolic pressure (SP) divided CO (p=0.0312*, n=6). Right ventricular wall stiffness was also significantly greater (p=0.039*, n=6) in anti-CD40 compared to

control sickle cell mice (data not shown). **p < 0.01, *p < 0.05, all comparisons between control (saline) and anti-CD40 dosed SCD mice were conducted by a two-

tailed student’s t -test with significance set at a significance of p<0.05.
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Anti-CD40 antibody treatment induced a systemic

inflammatory response in wildtype and SCD mice. Plasma

cytokines suggested a different pattern and possibly less

pronounced systemic inflammation in sickle cell mice compared
to wild-type littermates after anti-CD40 treatment. This finding is

consistent with the previous observation that liver macrophages in

hemolytic mice are skewed toward a hypoinflammatory phenotype

(30, 47). Nevertheless, CD40-induced inflammation led to an

exaggerated systemic response with endothelial cell activation and

hemolysis culminating in an acute liver crisis in the SCD mice.

Triggering toll-like receptor (TLR4), heme is an established
propagator of vaso-occlusion and the acute chest syndrome in

mouse models of sickle cell disease (43, 48, 49). Hemopexin

irreversibly sequesters heme in a hexa-coordinated protein

complex aborting oxidative and proinflammatory activities of

hemoglobin and heme (38, 39, 42, 43, 50). The positive effect

of hemopexin treatment in our studies reinforces the role of
accelerated hemolysis and heme as a disease amplifier in the

CD40-induced liver crisis.

In a hepatic crisis, hypervolemia and congestive heart failure

occur in response to rapid and repeated changes of liver sinusoidal

pressure (51). Therefore, the adverse hemodynamic response

observed in our model may be a direct result of the significant

liver congestion induced by the events mentioned above.
One of the limitations of existing murine sickle cell crisis

models is the lack of a simple readout to quantify disease activity.

In murine SCD, hypoxia-reoxygenation models are typically

associated with severe crises characterized in part by

hepatopathy (52), appearing progressively after a prolonged

period of hypoxia and graded by a multifactorial scoring
system. Other approaches to crisis induction in murine SCD

include LPS and TNF-a treatments, whose evaluation of disease

is mainly based on invasive methods such as intravital

microscopy techniques to quantify blood flow stasis in the skin

vasculature (13). In our model, we found an excellent correlation

between ALT level and disease extent, providing a simple and

accurate quantitative readout for the model supporting the
preclinical screening of new drugs.

Transgenic sickle cell mice are fragile and prone to morbidity

and mortality making any mechanistic study challenging. Unlike

LPS and TNF-a, anti-CD40 antibody has a long and predictable

half-life in vivo (53). Moreover, CD40 expression is more

restricted than the expression of toll-like receptors or the
TNF-a receptor. Both elements appear to be critical contributors

to the high reproducibility of the anti-CD40-induced

inflammatory response.

In humans, sickle crisis ranges in duration from several hours

up to days. While individual crises themselves typically resolve

with supportive care and close monitoring, repetitive crises are a

major contributor toward progessive disease and significant
morbidity. Therefore, studying therapeutic approaches to limit

crises induction in rationally designed and translatable animal

C DA

B

FIGURE 4 | Hemopexin and etanercept treatments as validation of the model. (A) Plasma ALT concentrations from saline and plasma-derived hemopexin (Hpx)

treated sickle cell mice dosed or not with anti-CD40 antibody (groups; saline n=12, aCD40 n= 21, hpx aCD40 n=16). (B) Plasma ALT concentrations from saline and

etanercept (eta) treated sickle cell mice dosed or not with anti-CD40 antibody (n=4). (C) Hierarchical clustering analysis of plasma cytokines from saline, hemopexin

(Hpx), etanercept (eta) dosed sickle cell mice, treated or not with anti-CD40 antibody (white=low expression, red=high expression) (groups; saline n=5, aCD40 n=9,

hpx aCD40 = 7, eta aCD40 n=4). (D) UMAP plot showing color-coded plasma cytokines from the same groups of animals as in (C) ****p < 0.0001, **p < 0.01

ANOVA with Tukey’s post hoc test for (A, B).
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models is critical to effectively attenuating SCD sequela

progression in humans.

In summary, this novel anti-CD40-triggered liver crisis model

provides an additional pre-clinical option to improve the

understanding of sickle cell crisis physiopathology. Further,

this model offers an efficient approach toward supporting
proof-of-concept studies that evaluate therapeutic approaches

to limit the duration of SCD crisis.
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