50 research outputs found

    Parsimonious continuous time random walk models and kurtosis for diffusion in magnetic resonance of biological tissue

    Get PDF
    In this paper, we provide a context for the modeling approaches that have been developed to describe non-Gaussian diffusion behavior, which is ubiquitous in diffusion weighted magnetic resonance imaging of water in biological tissue. Subsequently, we focus on the formalism of the continuous time random walk theory to extract properties of subdiffusion and superdiffusionthrough novel simplifications of the Mittag-Leffler function. For the case of time-fractional subdiffusion, we compute the kurtosis for the Mittag-Leffler function, which provides both a connection and physical context to the much-used approach of diffusional kurtosis imaging. We provide Monte Carlo simulations to illustrate the concepts of anomalous diffusion as stochastic processes of the random walk. Finally, we demonstrate the clinical utility of the Mittag-Leffler function as a model to describe tissue microstructure through estimations of subdiffusion and kurtosis with diffusion MRI measurements in the brain of a chronic ischemic stroke patient

    Cytosolic diffusivity and microscopic anisotropy of N-acetyl aspartate in human white matter with diffusion-weighted MRS at 7 T

    Get PDF
    Metabolite diffusion measurable in humans in vivo with diffusion-weighted spectroscopy (DW-MRS) provides a window into the intracellular morphology and state of specific cell types. Anisotropic diffusion in white matter is governed by the microscopic properties of the individual cell types and their structural units (axons, soma, dendrites). However, anisotropy is also markedly affected by the macroscopic orientational distribution over the imaging voxel, particularly in DW-MRS, where the dimensions of the volume of interest (VOI) are much larger than those typically used in diffusion-weighted imaging. One way to address the confound of macroscopic structural features is to average the measurements acquired with uniformly distributed gradient directions to mimic a situation where fibers present in the VOI are orientationally uniformly distributed. This situation allows the extraction of relevant microstructural features such as transverse and longitudinal diffusivities within axons and the related microscopic fractional anisotropy. We present human DW-MRS data acquired at 7 T in two different white matter regions, processed and analyzed as described above, and find that intra-axonal diffusion of the neuronal metabolite N-acetyl aspartate is in good correspondence to simple model interpretations, such as multi-Gaussian diffusion from disperse fibers where the transverse diffusivity can be neglected. We also discuss the implications of our approach for current and future applications of DW-MRS for cell-specific measurements

    Ethacrynic Acid Exhibits Selective Toxicity to Chronic Lymphocytic Leukemia Cells by Inhibition of the Wnt/β-Catenin Pathway

    Get PDF
    Aberrant activation of Wnt/β-catenin signaling promotes the development of several cancers. It has been demonstrated that the Wnt signaling pathway is activated in chronic lymphocytic leukemia (CLL) cells, and that uncontrolled Wnt/β-catenin signaling may contribute to the defect in apoptosis that characterizes this malignancy. Thus, the Wnt signaling pathway is an attractive candidate for developing targeted therapies for CLL. assays further confirmed the inhibitory effect of EA on Wnt/β-catenin signaling. Cell viability assays showed that EA selectively induced cell death in primary CLL cells. Exposure of CLL cells to EA decreased the expression of Wnt/β-catenin target genes, including LEF-1, cyclin D1 and fibronectin. Immune co-precipitation experiments demonstrated that EA could directly bind to LEF-1 protein and destabilize the LEF-1/β-catenin complex. N-acetyl-L-cysteine (NAC), which can react with the α, β-unsaturated ketone in EA, but not other anti-oxidants, prevented the drug's inhibition of Wnt/β-catenin activation and its ability to induce apoptosis in CLL cells.Our studies indicate that EA selectively suppresses CLL survival due to inhibition of Wnt/β-catenin signaling. Antagonizing Wnt signaling in CLL with EA or related drugs may represent an effective treatment of this disease

    Neural Plasticity in Moderate to Severe Chronic Stroke Following a Device-Assisted Task-Specific Arm/Hand Intervention

    Get PDF
    Currently, hand rehabilitation following stroke tends to focus on mildly impaired individuals, partially due to the inability for severely impaired subjects to sufficiently use the paretic hand. Device-assisted interventions offer a means to include this more severe population and show promising behavioral results. However, the ability for this population to demonstrate neural plasticity, a crucial factor in functional recovery following effective post-stroke interventions, remains unclear. This study aimed to investigate neural changes related to hand function induced by a device-assisted task-specific intervention in individuals with moderate to severe chronic stroke (upper extremity Fugl-Meyer < 30). We examined functional cortical reorganization related to paretic hand opening and gray matter (GM) structural changes using a multimodal imaging approach. Individuals demonstrated a shift in cortical activity related to hand opening from the contralesional to the ipsilesional hemisphere following the intervention. This was driven by decreased activity in contralesional primary sensorimotor cortex and increased activity in ipsilesional secondary motor cortex. Additionally, subjects displayed increased GM density in ipsilesional primary sensorimotor cortex and decreased GM density in contralesional primary sensorimotor cortex. These findings suggest that despite moderate to severe chronic impairments, post-stroke participants maintain ability to show cortical reorganization and GM structural changes following a device-assisted task-specific arm/hand intervention. These changes are similar as those reported in post-stroke individuals with mild impairment, suggesting that residual neural plasticity in more severely impaired individuals may have the potential to support improved hand function

    Predictors of pulmonary failure following severe trauma: a trauma registry-based analysis

    Get PDF
    Background: The incidence of pulmonary failure in trauma patients is considered to be influenced by several factors such as liver injury. We intended to assess the association of various potential predictors of pulmonary failure following thoracic trauma and liver injury. Methods: Records of 12,585 trauma patients documented in the TraumaRegister DGU® of the German Trauma Society were analyzed regarding the potential impact of concomitant liver injury on the incidence of pulmonary failure using uni- and multivariate analyses. Pulmonary failure was defined as pulmonary failure of ≥ 3 SOFA-score points for at least two days. Patients were subdivided according to their injury pattern into four groups: group 1: AIS thorax < 3; AIS liver < 3; group 2: AIS thorax ≥ 3; AIS liver < 3; group 3: AIS thorax < 3; AIS liver ≥ 3 and group 4: AIS thorax ≥ 3; AIS liver ≥ 3. Results: Overall, 2643 (21%) developed pulmonary failure, 12% (n= 642) in group 1, 26% (n= 697) in group 2, 16% (n= 30) in group 3, and 36% (n= 188) in group 4. Factors independently associated with pulmonary failure included relevant lung injury, pre-existing medical conditions (PMC), sex, transfusion of more than 10 units of packed red blood cells (PRBC), Glasgow Coma Scale (GCS) ≤ 8, and the ISS. However, liver injury was not associated with an increased risk of pulmonary failure following severe trauma in our setting. Conclusions: Specific factors, but not liver injury, were associated with an increased risk of pulmonary failure following trauma. Trauma surgeons should be aware of these factors for optimized intensive care treatment

    Protection Motivation Theory and Contingent Valuation: Perceived Realism, Threat and WTP Estimates for Biodiversity Protection

    Full text link

    Robustness of VSL Values from Contingent Valuation Surveys

    Full text link

    New Insights into the Fractional Order Diffusion Equation Using Entropy and Kurtosis

    No full text
    Fractional order derivative operators offer a concise description to model multi-scale, heterogeneous and non-local systems. Specifically, in magnetic resonance imaging, there has been recent work to apply fractional order derivatives to model the non-Gaussian diffusion signal, which is ubiquitous in the movement of water protons within biological tissue. To provide a new perspective for establishing the utility of fractional order models, we apply entropy for the case of anomalous diffusion governed by a fractional order diffusion equation generalized in space and in time. This fractional order representation, in the form of the Mittag–Leffler function, gives an entropy minimum for the integer case of Gaussian diffusion and greater values of spectral entropy for non-integer values of the space and time derivatives. Furthermore, we consider kurtosis, defined as the normalized fourth moment, as another probabilistic description of the fractional time derivative. Finally, we demonstrate the implementation of anomalous diffusion, entropy and kurtosis measurements in diffusion weighted magnetic resonance imaging in the brain of a chronic ischemic stroke patient
    corecore