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Currently, hand rehabilitation following stroke tends to focus on mildly impaired individuals,  
partially due to the inability for severely impaired subjects to sufficiently use the paretic 
hand. Device-assisted interventions offer a means to include this more severe population 
and show promising behavioral results. However, the ability for this population to demon-
strate neural plasticity, a crucial factor in functional recovery following effective post-stroke 
interventions, remains unclear. This study aimed to investigate neural changes related to 
hand function induced by a device-assisted task-specific intervention in individuals with 
moderate to severe chronic stroke (upper extremity Fugl-Meyer <  30). We examined 
functional cortical reorganization related to paretic hand opening and gray matter (GM) 
structural changes using a multimodal imaging approach. Individuals demonstrated a 
shift in cortical activity related to hand opening from the contralesional to the ipsilesional 
hemisphere following the intervention. This was driven by decreased activity in contrale-
sional primary sensorimotor cortex and increased activity in ipsilesional secondary motor 
cortex. Additionally, subjects displayed increased GM density in ipsilesional primary 
sensorimotor cortex and decreased GM density in contralesional primary sensorimotor 
cortex. These findings suggest that despite moderate to severe chronic impairments, 
post-stroke participants maintain ability to show cortical reorganization and GM struc-
tural changes following a device-assisted task-specific arm/hand intervention. These 
changes are similar as those reported in post-stroke individuals with mild impairment, 
suggesting that residual neural plasticity in more severely impaired individuals may have 
the potential to support improved hand function.

Keywords: stroke, hand rehabilitation, eeg, cortical reorganization, voxel-based morphometry, functional 
electrical stimulation, gray matter, neuroplasticity

inTrODUcTiOn

Nearly 800,000 people experience a new or recurrent stroke each year in the US (1). Popular thera-
pies, such as constraint-induced movement therapy (CIMT), utilize intense task-specific practice of 
the affected limb to improve arm/hand function in acute and chronic stroke with mild impairments 
(2, 3). Neuroimaging results partially attribute the effectiveness of these arm/hand interventions to 
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TaBle 1 | Subject demographics and clinical characteristics.

subject age range Time since stroke (years) lesioned hemi lesion location Ue FMa Pre BBT Post BBT Pre arOM (°) Post arOM (°)

S01 60–65 9 L IC 23 0 6  −20 11
S02 60–65 8 R IC, BG 12 1 3 0 5
S03 65–70 3 R Par, Occ, IC 17 0 1 0 0
S04 60–65 22 R IC, BG, Thal 11 0 1 0 17.5
S05 60–65 13 R Occ, IC 24 0 0 0 2.5
S06 70–75 20 L IC, BG, Thal 13 0 0 0 1.5
S07 55–60 6 L IC, BG 24 0 3 0 5
S08 60–65 9 L IC, Thal 22 11 13 38.5 55

AROM, active range of motion; BBT, Box and Blocks Test; BG, basal ganglia; FMA, Fugl-Meyer Assessment; IC, internal capsule; Occ, occipital lobe; Par, parietal lobe; Thal, 
thalamus; UE, upper extremity.
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cortical reorganization in the ipsilesional hemisphere following 
training in acute and mild chronic stroke (4). Unfortunately, 
CIMT requires certain remaining functionality in the paretic 
hand to execute the tasks, and only about 10% of screened patients 
are eligible (5), thus disqualifying a large population of individu-
als with moderate to severe impairments. Recently, studies using 
device-assisted task-specific interventions specifically targeted 
toward moderate to severe chronic stroke reported positive 
clinical results (6–8). However, these studies primarily focus on 
clinical measures, but it is widely accepted that neural plasticity 
is a key factor for determining outcome (9–11). Consequently, 
it remains unclear whether moderate to severe chronic stroke 
[upper extremity Fugl-Meyer Assessment (UEFMA)  <  30] 
maintains the ability to demonstrate neural changes following  
an arm/hand intervention.

Neural changes induced by task-specific training have been 
investigated widely using animal models (12). For instance, mon-
keys or rodents trained on a skilled reach-to-grasp task express 
enlarged representation of the digits of the hand or forelimb in 
primary motor cortex (M1) following training as measured by 
intracortical microstimulation (13, 14). Additionally, rapid local 
structural changes in the form of dendritic growth, axonal sprout-
ing, myelination, and synaptogenesis occur (15–18). Impor tantly, 
both cortical and structural reorganization corres ponds to motor 
recovery following rehabilitative training in these animals (19, 20).

The functional neural mechanisms underlying effective task-
specific arm/hand interventions in acute and chronic stroke 
subjects with mild impairments support those seen in the animal 
literature described above. Several variations of task-specific 
combined arm/hand interventions, including CIMT, bilateral 
task-specific training, and hand-specific robot-assisted practice, 
have shown cortical reorganization such as increased sensorimo -
tor activity and enlarged motor maps in the ipsilesional hemi-
sphere related to the paretic arm/hand (21–24). These results 
suggest increased recruitment of residual resources from the 
ipsilesional hemisphere and/or decreased recruitment of con-
tralesional resources following training. Although the evidence 
for a pattern of intervention-driven structural changes remains 
unclear in humans, several groups have shown increases in gray 
matter (GM) density in sensorimotor cortices (25), along with 
increases in fractional anisotropy in ipsilesional corticospinal 
tract (CST) (26) following task-specific training in acute and 
chronic stroke individuals with mild impairments.

The extensive nature of neural damage in moderate to severe 
chronic stroke may result in compensatory mechanisms, such as 
contralesional or secondary motor area recruitment (27). These 
individuals show increased contralesional activity when moving 
their paretic arm, which correlates with impairment (28, 29) and 
may be related to the extent of damage to the ipsilesional CST (30). 
This suggests that more impaired individuals may increasingly 
rely on contralesional corticobulbar tracts such as the corticore-
ticulospinal tract to activate the paretic limb (29). These tracts lack 
comparable resolution and innervation to the distal parts of the 
limb, thus sacrificing functionality at the paretic arm/hand (31). 
Since this population is largely ignored in current arm/hand inter-
ventions, it is unknown whether an arm/hand intervention for 
these more severely impaired post-stroke individuals will increase 
recruitment of residual ipsilesional corticospinal resources. These 
ipsilesional CSTs maintain the primary control of hand and finger 
extensor muscles (32) and are thus crucial for improved hand 
function. Task-specific training assisted by a device may reengage 
and strengthen residual ipsilesional corticospinal resources by 
training distal hand opening together with overall arm use.

The current study seeks to determine whether individuals 
with moderate to severe chronic stroke maintain the ability to 
show cortical reorganization and/or structural changes alongside 
behavioral improvement following a task-specific intervention. 
We hypothesize that following a device-assisted task-specific 
intervention, moderate to severe chronic stroke individuals will 
show similar functional and structural changes as observed in 
mildly impaired individuals, demonstrated by (i) a shift in cortical 
activity related to paretic hand opening from the contralesional 
hemisphere toward the ipsilesional hemisphere and (ii) an 
increase in GM density in sensorimotor cortices in the ipsilesional 
hemisphere.

MaTerials anD MeThODs

subjects
Eight individuals with chronic hemiparetic stroke (age: 63.5 ± 4) 
and moderate to severe impairment (UEFMA: 11–24) participated 
in this study. Clinical information for each subject is provided 
in Table 1 and lesion locations in Figure 1. All individuals were 
screened for inclusion by a licensed physical therapist. Inclusion 
criteria include a UEFMA between 10 and 30 out of 66, no cognitive 
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FigUre 1 | Lesion locations for the eight subjects overlaid on axial Montreal Neurological Institute T1 slices. The color bar indicates the number of subjects with 
lesioned tissue in a particular voxel. LH indicates the lesioned hemisphere.
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or perceptual impairment, no botulinum toxin within the last 
6 months, MRI compatibility, no lesion including sensorimotor 
cortices, the ability to elicit enough EMG activity at wrist/finger 
extensors, and the ability for the FES to generate a hand opening 
of at least 4  cm between the thumb and the index finger. This 
study was approved by the Northwestern University institutional 
review board, and all subjects gave informed consent.

experimental Protocols
Intervention
Subjects participated in a 7-week intervention consisting of three 
2-h visits per week. During the visit, subjects completed 20–30 
trials of the following sequence of movements: (1) reaching 
out toward a jar, (2) driving the wrist/finger extensors to open 
the paretic hand, (3) grabbing the jar, (4) bringing the jar back 
toward themselves, and (5) releasing the jar. The weight, distance/
height, and orientation of the jar relative to the subject were 
progressively altered to increase the challenge to each subject, 
as determined by the physical therapist. All subjects started the 
motor task with the arm supported by the table. Depending on 
ability, subjects were encouraged to progressively lift the paretic 
limb actively. During the task, a novel EMG-FES device, called 
ReIn-Hand, was used to assist paretic hand opening (see Figure 
S1 in Supplementary Material). This device recorded EMG activi-
ties from eight muscles (deltoid, biceps brachii, triceps, extensor 
communis digitorum, extensor carpi radialis (ECR), flexor 
digitorum profundus, flexor carpi radialis (FCR), and abductor 
pollicis). While the user performed the functional reaching and 
opening, the ReIn-Hand detected hand opening by extracting 
EMG features to trigger an Empi transcutaneous electrical 
neuro-stimulation device (Vista, CA, USA). The stimulation 
electrodes were applied to the wrist/finger extensors with the fol-
lowing settings: biphasic waveform, frequency = 50 Hz ± 20%, 
pulse width = 300 μs, amplitude = sufficient for maximal hand 
opening without discomfort, and duration  =  3  s. The novelty 
of this device is that even with the increased expression of the 
flexion synergy at the elbow (33), wrist, and fingers (34, 35) 
during reaching that is prevalent in this population, the device 
can still detect the hand opening and drive the paretic hand 
open, thus allowing for a user-driven stimulation to support 
functional usage of the paretic hand and arm. All participants 

could successfully use the device to complete the described 
task (including opening, grasping, and releasing), although 
some subjects experienced difficulty in sufficiently supinating 
the hand when releasing the jar to keep it upright on the table. 
Additionally, the physical therapist stretched the hand and arm 
at the beginning of the experiment and between trials to effec-
tively elicit hand openings with the EMG-FES device.

Pre- and Post-Intervention Tests
Clinical Assessments
For each subject, within 1 week prior to and following the inter-
vention, a licensed physical therapist completed a set of clinical 
assessments, with the motor-related parts including UEFMA, 
Box and Blocks Test (BBT), and active range of motion (AROM) 
averaged over the II and V digit.

Structural Imaging of the Brain
Within 2 weeks prior to and following the intervention, subjects 
participated in MRI scans at Northwestern University’s Center  
for Translation Imaging on a 3  TS Prisma scanner with a 
64-channel head coil. Structural T1-weighted scans were acquired 
using an MP-RAGE sequence (TR = 2.3 s, TE = 2.94 ms, FOV 
256 mm × 256 mm) producing an isotropic voxel resolution of 
1 mm ×  1 mm ×  1 mm. Visual inspection of acquired images 
was performed immediately following the data acquisition to 
guarantee no artifacts and stable head position.

Functional Imaging Related to Hand Opening
Within 1 week prior to and following the intervention, subjects 
also participated in an EEG experiment. During the EEG experi-
ment, participants sat in a Biodex chair (Biodex Medical Systems, 
Shirley, NY, USA), which restrained the trunk with straps cross-
ing the chest and abdomen. The subject’s paretic arm was placed 
in a forearm-hand orthosis attached to the end effector of an 
admittance controlled robotic device (ACT3D) instrumented with 
a six degree of freedom load cell (JR3, Inc., Woodland, CA, USA). 
At the beginning of each trial, subjects moved their hand to a 
home position, with the shoulder at 85° abduction, 40° flexion, 
and the elbow at 90° flexion angle. The subject then received an 
auditory cue. Following the cue, subjects relaxed at the home 
position for 5–7 s and then self-initiated a maximum attempted 
paretic hand opening with the arm resting on a haptic table. 
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Subjects were instructed to avoid eye movements by focusing  
on a point and avoid movements of other body parts during 
the performance of each trial, which was visually confirmed by 
the experimenter. Subjects performed 60–70 trials of attempted 
paretic hand opening, broken into blocks (one block consisted of 
20–30 trials). Rest periods varied between 15 and 60 s between 
trials and 10  min between blocks. The typical duration of the 
experiment was around 5–6 h, including ~2 h of setup, ~1 h for 
lunch, and ~2 h of data collection.

Scalp recordings were made with a 160-channel high-density 
EEG system using active electrodes (Biosemi, Inc., Active II, 
Amsterdam, The Netherlands) mounted on a stretchable fabric 
cap based on a 10/20 system. Simultaneously, EMGs were 
recorded from the ECR, FCR, and intermediate deltoid of the 
paretic arm. All data were sampled at 2,048  Hz. The imped-
ance was kept below 5 kΩ for the duration of the experiment. 
Additionally, the positions of EEG electrodes on the subject’s 
scalp were recorded with respect to a coordinate system defined 
by the nasion and preauricular notches using a Polaris Krios 
handheld scanner and reflective markers (NDI, ON, Canada). 
This allowed for coregistration of EEG electrodes with each 
subject’s anatomical MRI data. Due to post-stroke abnormal 
synergy, finger/wrist extensors and flexors, and often the shoul-
der abductors, usually co-activate together when performing 
maximal hand opening (34). Therefore, in order to provide a 
reliable indicator of movement onset, EMGs were simultane-
ously recorded from the ECR, FCR, and anterior deltoid (IDL) 
of the paretic arm.

Data analysis
Reorganization of Cortical Activity Related  
to Hand Opening
EEG data were aligned to the earliest EMG onset of the three 
muscles and segmented from −2,200 to +200  ms (with EMG 
onset at 0  ms) using Brain Vision Analyzer 2 software (Brain 
Products, Gilching, Germany). Data were then visually inspected 
for the presence of artifacts. Trials exhibiting artifacts (e.g., eye 
blinks) were eliminated from further analysis. The remaining 
EEG trials were baseline-corrected (from −2,180 to −2,050 ms), 
low-pass-filtered at 70 Hz, and ensemble-averaged. The averaged 
EEG signals were down-sampled to 256 Hz and imported into 
CURRY 6 (Compumedics Neuroscan Ltd., El Paso, TX, USA). 
The cortical current density strength (μA/mm2) in the time 
between 150 and 100 ms prior to EMG onset was computed using 
the standardized low-resolution electromagnetic brain tomog-
raphy (sLORETA) method (Lp = 1) based on a subject-specific 
boundary element method model with the regulation param-
eter automatically adjusted to achieve more than 99% variance 
counted (36, 37). Possible sources were located on a cortical layer 
with 3  mm distance between each node. Although the inverse 
calculation was performed over the whole cortex, only the activity 
in bilateral sensorimotor cortices was further analyzed. Specific 
regions of interest (ROI) included bilateral primary sensorimotor 
cortices [primary motor cortex (M1) + primary sensory cortex 
(S1)] and secondary motor cortices [supplementary motor area 
(SMA) + premotor area (PM)].

To investigate the shift of cortical activity related to hand 
opening, we used the estimated current density strengths to 
calculate a laterality index [LI = (I − C)/(I + C)], where I and C 
are the current density strengths from the ipsilesional and con-
tralesional sensorimotor cortices, respectively (i.e., combined 
primary sensorimotor and secondary motor cortices). LI reflects 
the relative contributions of each cerebral hemisphere to the 
source activity, with a value close to +1 for an ipsilesional source 
distribution and −1 for a contralesional source distribution.

Additionally, we quantified a cortical activity ratio 

CAR = ∑
∑
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n
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 for each of the four ROIs, where S represents the 

current density strength of one of the nodes, and n and m rep-
resent the number of nodes in the ROI and whole sensorimotor 
cortices, respectively. The cortical activity ratio reflects the rela-
tive strength from one ROI as normalized by the total combined 
strength of the four ROIs.

Structural Changes in GM Density
Anatomical T1 data were analyzed with FSL-voxel-based morphom-
etry (VBM) 1.1 (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM; 
Oxford University, Oxford, United Kingdom) (38) using FSL tools 
(39). First, T1 images for participants who have left hemisphere 
lesions were flipped to ensure that the lesions of all subjects were 
in the right hemisphere. The T1 images were then brain-extracted 
using the Brain Extraction Tool and segmented into GM using 
FAST4. The resulted GM partial volume images were aligned 
to Montreal Neurological Institute (MNI) 152 standard space 
using the affine registration tool FLIRT and averaged to create a 
study-specific GM template. Subsequently, individual GM partial 
volume images in native space were non-linearly registered to this 
template using FNIRT, modulated to correct for local expansion 
or contraction due to the non-linear component of the spatial 
transformation, and then smoothed with an isotropic Gaussian 
kernel with a sigma of 3 mm. Finally, a voxel-wise General Linear 
Model was applied with Threshold-Free Cluster Enhancement 
(40) to detect changes in GM density following the interven-
tion. Voxel-based threshold of changes in GM density was set at 
p < 0.001 uncorrected.

statistical analysis
Statistics were performed using SPSS (IBM, V23). Clinical and 
neural measures were examined for normality using a Shapiro–
Wilk test. A Wilcoxon signed rank test was used if assumptions 
of normality were not met. A paired t-test was performed on LI. 
A 2 (time) × 4 (region) repeated measures ANOVA was per for med 
on the cortical activity ratio. We performed post hoc paired t-tests 
when a main ANOVA effect was found. Significance was set at 
p < 0.05. Individual data are depicted for all significant findings.

resUlTs

changes in arm/hand Function following 
eMg-Fes Task-specific Training
Table  1 shows pre and post BBT and AROM scores. Notably, 
most subjects initially scored a 0 on the pre-assessment BBT and 
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FigUre 2 | (a) Ensemble-averaged EEG of the 160 channels (blue butterfly plot) and Mean Global Field Power (MGFP; red line) from −2 s to +0.2 s (0 = EMG 
onset). Vertical dashed lines represent the start and end of the window of interest (−150 to −100 ms). A scale bar is included in the lower left; (B) reconstructed 
cortical activity between −150 and −100 ms prior to movement onset for Subject 1 during hand opening pre-intervention, and (c) post-intervention. Color bars 
indicate the current density reconstruction (CDR) statistic from sLORETA. Left hemisphere is the lesioned hemisphere.
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showed 0° of AROM due to the severity of their motor impair-
ments at the arm/hand. The clinical data violated the assump-
tions of normality based on the Shapiro–Wilk test. Therefore, a 
Wilcoxon signed rank test was used and reported a significant 
increase in BBT following the intervention (average increase of 
1.9 blocks per minute, p = 0.03; Table 1) and AROM (average 
increase of 9.9°, p = 0.03; Table 1), indicating improvement of 
paretic arm/hand control, although FMA did not change.

cortical reorganization related  
to the hand
Figure 2A shows an example of ensemble-averaged EEG for the 
160 channels for Subject 1. There is a clear baseline from roughly 
−2 to −1.5 s prior to EMG onset and then a slow increase in elec-
trical potential when approaching EMG onset, consistent with 
the Bereitschaftspotential. The reconstructed cortical activity  

for Subject 1 while performing hand opening on the table is  
depicted in Figure  2B pre-intervention and in Figure  2C 
post-intervention. This subject showed bilateral activity in sen-
sorimotor cortex prior to the intervention as seen in Figure 2B 
and dominant ipsilesional activity following the intervention as 
seen in Figure 2C. We quantified the pre- and post-intervention 
LI in each of the participants (see results in Figure 3). A paired 
t-test found a significant increase in LI following the intervention 
[t(7) = 3.09, p = 0.02], signifying a post-intervention shift toward 
the ipsilesional hemisphere.

To further investigate regions responsible for the post- 
intervention LI changes, we quantified the pre- and post- 
intervention cortical activity ratios for primary sensorimotor 
(M1/S1) and secondary motor (SMA/PM) cortices (see results 
in Figure 4). A 2 (time) × 4 (region) repeated measures ANOVA 
found a significant time  ×  region interaction [F(1,7)  =  3.47, 
p  =  0.03]. Post hoc paired t-tests found that following the 
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FigUre 3 | Box plots of laterality index (LI) prior to and following the 
intervention for paretic hand opening. Positive LI indicates predominantly 
ipsilesional activity. *indicates p < 0.05.

FigUre 4 | Box plots depicting cortical activity ratio prior to and following the intervention for hand opening on the table. Regions of interests include M1/S1 and 
supplementary motor area/premotor area (SMA/PM) for both ipsilesional (left side of figure) and contralesional (right side of figure) hemispheres. *indicates p < 0.05, 
#indicates p = 0.06.
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intervention, there was a decrease in the cortical activation ratio 
in contralesional M1/S1 (p  =  0.04) and a trending increase in 
ipsilesional SMA/PM (p = 0.06) related to paretic hand opening.

gM Density
Following the intervention, subjects displayed significantly greater 
GM density in M1 and S1 in the lesioned hemisphere (x = 52, 
y = −16, z = 30, t-value = 2.55, p < 0.001) and a decrease in GM 
density in M1 and S1 in the non-lesioned hemisphere (x = −46, 
y = −20, z = 60, t-value = 2.41, p < 0.001; x = −44, y = −18, 
z = 36, t-value = 2.79, p < 0.001) as depicted in Figures 5A,B. 

Additionally, subjects displayed greater GM density in the 
thalamus in the lesioned hemisphere (x =  2, y = −20, z =  10, 
t-value = 3.13, p < 0.001) as shown in Figure 5C. A complete list 
of significant regions is provided in Table S1 in Supplementary 
Material.

DiscUssiOn

The present study investigated neural changes in individuals 
with moderate to severe stroke following an EMG-FES-assisted 
task-specific arm/hand intervention. Specifically, we found a 
shift of sensorimotor cortical activity related to hand opening 
from contralesional to ipsilesional cortex, along with structural 
changes in the form of increased ipsilesional M1/S1 and decreased  
contralesional M1/S1 GM density. Although similar device-
assisted hand/arm training in this population has been investi-
gated before to examine behavioral improvements (7, 41, 42), this 
study provides evidence for corresponding neural changes even 
in this more severe chronic population.

shift toward ipsilesional hemisphere
As expected, before the intervention, subjects showed cortical 
activity predominantly from the contralesional hemisphere 
related to open the paretic hand, as reflected by the overall negative 
LI. This contralesional activity may suggest an increased reliance 
on low-resolution contralesional corticobulbar pathways such as 
the corticoreticulospinal tract (31, 43) for general paretic arm 
function. In fact, more severely impaired subjects actually tend to 
involuntarily close the hand and activate shoulder muscles when 
asked to open (35), which may reflect this increased reliance on 
ipsilateral corticobulbar pathways that innervate primarily flexor 
hand and proximal muscles compared to extensors (44). These 
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FigUre 5 | Statistical maps of gray matter (GM) density changes across all patients. Significant increases (red/yellow) and decreases (Blue) in GM density are 
depicted on sagittal, coronal, and axial sections (left to right) on Montreal Neurological Institute T1 slices. Sections show the maximum effect on (a) ipsilesioned  
M1/S1, (B) contralesional M1/S1, and (c) ipsilesional thalamus. Les indicates the side of the lesioned hemisphere. Color maps indicate the t values at every voxel.  
A statistical threshold was set at p < 0.001 uncorrected.

pathways lack sufficient innervation to extensor muscles of the 
hand to produce appropriate hand opening (45) and are often 
associated with greater motor impairment (29, 31).

Effective hand/arm interventions in mildly impaired post-
stroke individuals have reported a post-intervention shift toward 

ipsilesional sensorimotor areas (46, 47). This shift is thought to 
be a beneficial since it may indicate increased use of ipsilesional 
CSTs, which maintain the primary innervations to the extensor 
muscles of the hand (32). Intervention-induced shifts toward the 
ipsilesional hemisphere have rarely been investigated in more 
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severely impaired post-stroke individuals, especially not for 
arm/hand training partially due to the lack of inclusion of these 
subjects in arm/hand interventions. In this study, we found that 
a ReIn-Hand-assisted arm/hand intervention induced a positive 
change in LI. Our results suggest that even moderate to severe 
chronic stroke subjects maintain the ability to show similar 
cortical reorganization back toward the ipsilesional hemisphere 
following task-specific training as seen in more mild subjects. 
This ipsilesional shift may suggest decreased recruitment of 
contralesional corticobulbar pathways and increased reliance 
on ipsilesional CSTs during paretic hand opening, which may 
allow for greater functionality at the hand as seen by the increase 
in BBT and AROM. Additionally, it could reflect increased abil-
ity to actually drive hand opening when instructed rather than 
involuntary closing and activating proximal muscles (35). It is 
worth noting that only six out eight participants exhibited this 
intervention-induced shift despite all showing improvements on 
either BBT or AROM, possibly reflecting compensatory behav-
ioral strategies following the intervention rather than recovery 
in these two participants.

changes in cortical activity Driving  
li shift
We calculated the cortical activity ratio in each sensorimotor 
region to further elucidate which regions were contributing to the 
LI shift. Following the intervention, subjects showed decreased 
activity in contralesional primary sensorimotor cortex (M1/S1) 
and a trending increase in ipsilesional secondary motor cortex 
(SMA/PM).

Increased contralesional primary sensorimotor cortex activity  
is associated with greater impairment following stroke (48, 49) 
 and greater damage to CST (50, 51). Therefore, this decreased 
activity could reflect either decreased recruitment of contral-
esional descending motor pathways or changes in interhemi-
spheric balance between primary sensorimotor cortices (52) and 
thus allow for increased functional usage of the affected hand.

Stroke patients tend to activate secondary motor areas more 
following greater CST damage (51) and show positive correlations 
between ipsilesional secondary motor area activation and recovery 
(53, 54). The increased recruitment of ipsilesional SMA/PM 
may be due to increased recruitment of direct projections to the 
spinal cord (55), although these connections are not as efficacious 
as connections from M1 to the spinal cord (56). Alternatively, 
plasticity within intrinsic cortico-cortico neuronal connections in 
M1 (57) may allow increased communication between SMA/PM 
and M1 following injury. Thus, ipsilesional secondary motor areas 
may serve as a potential avenue for functionally relevant cortical 
reorganization via either descending or intrinsic connections in 
addition to removal of contralesional cortical activity.

increased gM Density in ipsilesional 
sensorimotor cortex
Previous work demonstrated significant decreases in GM volume 
in ipsilesional precentral gyrus following a subcortical stroke, 
which was associated with greater impairment (58). However, fol-
lowing task-specific training, mild chronic stroke subjects showed 

increases in GM density in ipsilesional sensorimotor cortex (25), 
and increases in perilesional GM density were associated with 
better recovery in acute stroke (59). Similarly, we found increased 
ipsilesional M1/S1 GM density following the intervention in our 
moderate to severe stroke population. Additionally, a significant 
positive correlation was found between changes in LI and changes 
in GM density in ipsilesional M1/S1 following the intervention 
(R2  =  0.70, p  <  0.05; Figure S2 in Supplementary Material), 
showing that activity shifting to the ipsilesional hemisphere was 
associated with increased ipsilesional M1/S1 GM density.

Increases in GM density may suggest potential synaptogenesis, 
dendritic growth, or gliogenesis at the cortex (60). Thus, these 
changes may be due to new synapse formation and dendritic 
growth commonly seen in animal training models (61). Addi-
tionally, these subjects likely experienced cortical atrophy prior 
to the intervention due to disuse of the paretic limb, which may 
have been partially remedied following the intervention due to 
increased use of the paretic arm/hand. Despite greater damage 
to ipsilesional descending motor tracts, these severely impaired 
individuals demonstrate the ability to reorganize ipsilesional 
primary sensorimotor cortices.

In these more severely impaired post-stroke individuals, we 
also found intervention-induced decreases in contralesional 
M1/S1 GM density, which were not reported before in mildly 
impaired individuals. This decrease may be specific to more 
severe patients since post-stroke, increased use of the con-
tralesional hemisphere occurs to a greater degree in severely 
impaired individuals compared with milder individuals (29). 
The decrease in GM density in contralesional M1/S1 may 
indicate a decrease in dendritic complexity or synapses in these 
areas (62). These structural changes may be a result of decreased 
activation in these areas due to decreased recruitment during 
movement or overall decreased use (63, 64). Alternatively, they 
may be due to decreased tonic activity in these contralesional 
sensorimotor areas, which is thought to be a contributor to 
hyperexcitability in the brainstem and subsequent increased 
tone in this population (65, 66).

The increases in GM density seen in the thalamus in our 
results may be due to the repeated use of electrical stimulation 
throughout the intervention. Although we focused on the motor 
changes in this study, it is likely that these subjects show sensory 
neural changes as well due to the augmented afferent feedback 
generated by the EMG-FES device. Therefore, it is not surpris-
ing to see changes in the thalamus due to its central role as a 
sensory relay station for both the cutaneous and proprioceptive 
sensory modalities (67).

limitations
The main limitation of the current study is the small sample size. 
Despite the relatively small n, we observed consistent patterns 
of functional and structural changes. These changes signify the 
importance of examining the potential neural mechanisms found 
here in a larger population of moderate to severe chronic stroke 
subjects. Additionally, there was no control group in the present 
study. However, this study was aimed at investigating whether 
this population maintained the ability to show neural changes 
following an intervention, rather than answering the question 
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of what is the optimal intervention for this population. Another 
potential confounding factor from the task-specific interven-
tion is the amount of stretching. However, stretching on its own  
is unlikely to drive the functional and structural changes found 
in this study (68), even though it may temporarily reduce 
the stretch reflex activation of wrist and finger flexors (69). 
Additionally, reduced flexion synergy and subsequent decreased 
involuntary shoulder abduction/adduction force generation 
during hand opening (34) could contribute to intervention-
induced changes in LI.

One of the primary long-term goals of the current study is 
to substantially increase the population included in task-specific 
therapy. Although the current ReIn-Hand device allowed our 
cohort of moderate to severe chronic stroke individuals to par-
ticipate in task-specific training, it does require both detectable 
extensor EMGs to drive the device and responsiveness to FES to 
create sufficient hand opening. In our experience, limiting our 
inclusion criteria to an FMA ≥10 satisfied these requirements in 
most of initially screened participants (18 out of 20). However, 
due to the current sample size, it is difficult to accurately specify 
the portion of individuals who could utilize the ReIn-Hand 
device. However, considering that only ~5% of nearly 800 post- 
stroke individuals in the Clinical Neuroscience Research 
Registry hosted by the Rehabilitation Institute of Chicago and 
Northwestern University exhibit FMA scores less than 10, it 
clearly substantially increases coverage compared with conven-
tional task-specific training.

cOnclUsiOn

The present study shows the ability of even moderate to severe 
chronic stroke subjects to show cortical reorganization at both 
the functional and structural levels following a device-assisted 
task-specific intervention in a manner resembling that seen in 
mild chronic stroke subjects. Despite the tendency to focus on 
acute or mild chronic stroke patients in hand function rehabilita-
tion, the current study encourages the continued push to use 
devices to involve moderate to severe chronic stroke subjects in 
task-specific arm/hand rehabilitation.
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