4,217 research outputs found
Quasi-periodic pulsations in solar and stellar flares: re-evaluating their nature in the context of power-law flare Fourier spectra
The nature of quasi-periodic pulsations in solar and stellar flares remains
debated. Recent work has shown that power-law-like Fourier power spectra, also
referred to as 'red' noise processes, are an intrinsic property of solar and
stellar flare signals, a property that many previous studies of this phenomenon
have not accounted for. Hence a re-evaluation of the existing interpretations
and assumptions regarding QPP is needed. Here we adopt a Bayesian method for
investigating this phenomenon, fully considering the Fourier power law
properties of flare signals. Using data from the PROBA2/LYRA, Fermi/GBM,
Nobeyama Radioheliograph and Yohkoh/HXT instruments, we study a selection of
flares from the literature identified as QPP events. Additionally we examine
optical data from a recent stellar flare that appears to exhibit oscillatory
properties. We find that, for all but one event tested, an explicit oscillation
is not required in order to explain the observations. Instead, the flare
signals are adequately described as a manifestation of a power law in the
Fourier power spectrum, rather than a direct signature of oscillating
components or structures. However, for the flare of 1998 May 8, strong evidence
for the existence of an explicit oscillation with P ~ 14-16 s is found in the
17 GHz radio data and the 13-23 keV Yohkoh HXT data. We conclude that, most
likely, many previously analysed events in the literature may be similarly
described in terms of power laws in the flare Fourier power spectrum, without
the need to invoke a narrowband, oscillatory component. As a result the
prevalence of oscillatory signatures in solar and stellar flares may be less
than previously believed. The physical mechanism behind the appearance of the
observed power laws is discussed.Comment: 11 pages, 7 figures, 1 table. Accepted for publication in The
Astrophysical Journa
Quarterly literature review of the remote sensing of natural resources
The Technology Application Center reviewed abstracted literature sources, and selected document data and data gathering techniques which were performed or obtained remotely from space, aircraft or groundbased stations. All of the documentation was related to remote sensing sensors or the remote sensing of the natural resources. Sensors were primarily those operating within the 10 to the minus 8 power to 1 meter wavelength band. Included are NASA Tech Briefs, ARAC Industrial Applications Reports, U.S. Navy Technical Reports, U.S. Patent reports, and other technical articles and reports
Literature review of the remote sensing of natural resources
Abstracts of 596 documents related to remote sensors or the remote sensing of natural resources by satellite, aircraft, or ground-based stations are presented. Topics covered include general theory, geology and hydrology, agriculture and forestry, marine sciences, urban land use, and instrumentation. Recent documents not yet cited in any of the seven information sources used for the compilation are summarized. An author/key word index is provided
Electrokinetically-Enhanced Emplacement of Lactate in a Chlorinated Solvent Contaminated Clay Site to Promote Bioremediation
Bioremediation through the injection of electron donors and bacterial cultures is effective at treating chlorinated solvent contamination but faces limitations in low permeability zones where the injected amendments cannot be delivered successfully. Using electrokinetics in combination with bioremediation to enhance the delivery of amendments was tested at a chlorinated solvent contaminated field site, where lactate was injected into clay under a direct current. Advection at locations with higher hydraulic conductivities contributed to lactate transport and dilution of aqueous chlorinated solvents. There was evidence of successful delivery of lactate by electromigration (EM) in all monitoring locations with EM lactate transport rates between 1.3 to 3.0 cm/day. Lactate emplacement resulted in the stimulation of bacterial populations and evidence suggests some biodegradation of chlorinated solvents was observed on site. This research provides evidence that with further field investigation, electrokinetically-enhanced bioremediation has potential as a treatment strategy for contaminated low permeability strata
Market orientation and accounting information - a product-level study
From the early 1990’s, both the marketing and accounting disciplines have reported insightful and similar developments. In seeking to define and measure the marketing concept, research on ‘market orientation’ has highlighted the need for organization-wide information and action on customers and competitors. In accounting, research into ‘strategic management accounting’ has also emphasised the need for customer and competitor information in management decision-making.
Given the common and interdisciplinary nature of the extant research in marketing and accounting, a theoretical framework is developed in this thesis for examining market orientation and accounting information linkages at a product-level. The subsequent undertaking and detailed analysis and description of an organisational case-study suggests that the inclusion of a number of variables into the initial theoretical framework would provide a more robust and practice-orientated model for examining market orientation and accounting information. Product-attribute level measures of customer- and competitor-orientation are developed from the case-study and the effectiveness of a market-orientation in facilitating the satisfaction of customer needs at a profit to the firm is questioned where there is an absence of market-orientated accounting information
Characteristics of magnetoacoustic sausage modes
Aims: We perform an advanced study of the fast magnetoacoustic sausage oscillations of coronal loops in the context of MHD coronal seismology to establish the dependence of the sausage mode period and cut-off wavenumber on the plasma- of the loop-filling plasma. A parametric study of the ratios for different harmonics of the mode is also carried out.
Methods: Full magnetohydrodynamic numerical simulations were performed using Lare2d, simulating hot, dense loops in a magnetic slab environment. The symmetric Epstein profile and a simple step-function profile were both used to model the density structure of the simulated loops. Analytical expressions for the cut-off wavenumber and the harmonic ratio between the second longitudinal harmonic and the fundamental were also examined.
Results: It was established that the period of the global sausage mode is only very weakly dependent on the value of the plasma- inside a coronal loop, which justifies the application of this model to hot flaring loops. The cut-off wavenumber kc for the global mode was found to be dependent on both internal and external values of the plasma-, again only weakly. By far the most important factor in this case was the value of the density contrast ratio between the loop and the surroundings. Finally, the deviation of the harmonic ratio P1/2P2 from the ideal non-dispersive case was shown to be considerable at low k, again strongly dependent on plasma density. Quantifying the behaviour of the cut-off wavenumber and the harmonic ratio has significant applications to the field of coronal seismology
Quasi-periodic pulsations in the gamma-ray emission of a solar flare
Quasi-periodic pulsations (QPPs) of gamma-ray emission with a period of about 40 s are found in a single loop X-class solar flare on 2005 January 1 at photon energies up to 2-6 MeV with the SOlar Neutrons and Gamma-rays (SONG) experiment aboard the CORONAS-F mission. The oscillations are also found to be present in the microwave emission detected with the Nobeyama Radioheliograph, and in the hard X-ray and low energy gamma-ray channels of RHESSI. Periodogram and correlation analysis shows that the 40 s QPPs of microwave, hard X-ray, and gamma-ray emission are almost synchronous in all observation bands. Analysis of the spatial structure of hard X-ray and low energy (80-225 keV) gamma-ray QPP with RHESSI reveals synchronous while asymmetric QPP at both footpoints of the flaring loop. The difference between the averaged hard X-ray fluxes coming from the two footpoint sources is found to oscillate with a period of about 13 s for five cycles in the highest emission stage of the flare. The proposed mechanism generating the 40 s QPP is a triggering of magnetic reconnection by a kink oscillation in a nearby loop. The 13 s periodicity could be produced by the second harmonics of the sausage mode of the flaring loop
- …