55 research outputs found

    Mixing in lock-release gravity currents propagating up a slope

    Get PDF
    Lock-exchange gravity currents propagating up a slope are investigated by large eddy simulations, focusing on the entrainment and mixing processes occurring between the dense current and the ambient fluid. Relevant parameters, such as the aspect ratio of the initial volume of dense fluid in the lock R, the angle between the bottom boundary and the horizontal direction \u3b8 and the depth aspect ratio \u3c6, are varied. The numerical results are compared with laboratory experiments and a good agreement is found. Entrainment and mixing in a lock-release gravity current are studied using different entrainment parameters and an energy budget method. The entrainment is found to depend on both Froude, Fr, and Reynolds, Re, numbers. In addition, the dependence of both entrainment and mixing on the parameters varied is discussed. The entrainment decreases with increasing steepness of the bottom and R. Irreversible mixing is not affected by the varied parameters during the slumping phase, while during the successive phases of motion, it is found to decrease with the increase of \u3b8 and R. Low entrainment and mixing occur for \u3c6 <

    A network of sex and competition: The promiscuous mating system of an invasive weevil

    Get PDF
    Abstract Invasive alien pest insect species represent a major threat for agriculture and biodiversity. Because chemical treatments employed to contrast such pests elicit serious environmental and human health problems, a great effort is currently directed to develop long term and environmentally friendly biological control strategies. However, the successful application of some promising techniques, such as the Sterile Insect Technique (SIT), requires a deep knowledge of the pest basic biology. Here, we argue that understanding pest sexual biology using a social network approach can significantly improve the performance of control strategies. For example, SIT may benefit from understanding how individuals interact and how males accede to reproduction, in order to target the most reproductively active and polygamic males. In this paper we studied the socio-sexual networks of the Asian red palm weevil (RPW) Rhynchophorus ferrugineus, a worldwide invader which is causing heavy economic impacts on several palm species. We found that the RPW has a highly promiscuous mating system, characterized by forced interruptions of pair copulations by additional males. The social network is highly non-random nor regular: few males almost monopolize reproduction, behaving as key-players in the network of matings. Additionally, males have a stable pattern of sexual behaviour over time. We use RPW social network as a case study to direct the development of management techniques such as SIT strategy

    Last-male sperm precedence in Rhynchophorus ferrugineus (Olivier): observations in laboratory mating experiments with irradiated males

    Get PDF
    The Red PalmWeevil (RPW)Rhynchophorus ferrugineus(Olivier 1790) is an invasive pest from southeastern Asia and Melanesia that in the last 30 years has spread widely in the Middle East and Mediterranean Basin. Its stem-boring larvae cause great damage to several palm species of the Arecaceae family, many of which are economically important for agricultural and ornamental purposes. Therefore, great attention has recently been focused in studying this species to identify sustainable and effective eradication strategies, such as sterile insect technique (SIT). The rapid spread of RPW is associated with its high reproductive success. To evaluate the suitability of a SIT strategy, particular physiological and behavioral aspects of RPW reproduction, such as the presence of polyandry and post-copulatory sperm selection mechanisms, were investigated. To determine paternity of progeny from multiply mated females, double-crossing experiments were carried out confining individual females with either a wild-type male or a Îł-irradiated male (Co-60). Fecundity and fertility of females were scored to evaluate post-copulatory sperm selection. Results showed that progeny were almost exclusively produced by the sperm of the second male, suggesting that a last-male sperm precedence is expressed at high levels in this species, and providing interesting insights for an area-wide RPW management strategy such as the SIT

    POSEIDON: An integrated system for analysis and forecast of hydrological, meteorological and surface marine fields in the Mediterranean area

    Get PDF
    The Mediterranean area is characterized by relevant hydrological, meteorological and marine processes developing at horizontal space-scales of the order of 1–100 km. In the recent past, several international programs have been addressed (ALPEX, POEM, MAP, etc.)to “resolving” the dynamics of such motions. Other projects (INTERREG-Flooding, MEDEX, etc.)are at present being developed with special emphasis on catastrophic events with major impact on human society that are, quite often, characterized in their manifestation by processes with the above-mentioned scales of motion. In the dynamical evolution of such events, however, equally important is the dynamics of interaction of the local (and sometimes very damaging)pro cesses with others developing at larger scales of motion. In fact, some of the most catastrophic events in the history of Mediterranean countries are associated with dynamical processes covering all the range of space-time scales from planetary to local. The Prevision Operational System for the mEditerranean basIn and the Defence of the lagOon of veNice (POSEIDON)is an integrated system for the analysis and forecast of hydrological, meteorological, oceanic fields specifically designed and set up in order to bridge the gap between global and local scales of motion, by modeling explicitly the above referred to dynamical processes in the range of scales from Mediterranean to local. The core of POSEIDON consists of a “cascade” of numerical models that, starting from global scale numerical analysisforecast, goes all the way to very local phenomena, like tidal propagation in Venice Lagoon. The large computational load imposed by such operational design requires necessarily parallel computing technology: the first model in the cascade is a parallelised version of BOlogna Limited Area Model (BOLAM)running on a Quadrics 128 processors computer (also known as QBOLAM). POSEIDON, developed in the context of a co-operation between the Italian Agency for New technologies, Energy and Environment (Ente per le Nuove tecnologie, l’Energia e l’Ambiente, ENEA)and the Italian Agency for Environmental Protection and Technical Services (Agenzia per la Protezione dell’Ambiente e per i Servizi Tecnici, APAT), has become operational in 2000 and we are presently in the condition of drawing some preliminary conclusions about its performance. In the paper we describe the scientific concepts that were at the basis of the original planning, the structure of the system, its operational cycle and some preliminary scientific and technical evaluations after two years of experimentation
    • …
    corecore