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Lock-exchange gravity currents propagating up a slope are investigated by large eddy 
simulations, focusing on the entrainment and mixing processes occurring between 
the dense current and the ambient fluid. R elevant p arameters, s uch a s t he aspect 
ratio of the initial volume of dense fluid in the lock R, the angle between the bottom 
boundary and the horizontal direction θ and the depth aspect ratio φ, are varied. The 
numerical results are compared with laboratory experiments and a good agreement 
is found. Entrainment and mixing in a lock-release gravity current are studied using 
different entrainment parameters and an energy budget method. The entrainment is 
found to depend on both Froude, Fr, and Reynolds, Re, numbers. In addition, the 
dependence of both entrainment and mixing on the parameters varied is discussed. 
The entrainment decreases with increasing steepness of the bottom and R. Irreversible 
mixing is not affected b y t he varied p arameters d uring t he s lumping p hase, while 
during the successive phases of motion, it is found to decrease with the increase of θ 
and R. Low entrainment and mixing occur for φ < 1. 

I. INTRODUCTION

Gravity currents are buoyancy driven flows in which the density gradient causes the development
of the flow predominantly in the horizontal direction. The density difference between the current
and the surrounding fluid can be due to temperature or salinity gradients, or due to the presence
of suspended particulates. In the latter case, the flow is more properly referred to as a turbidity
current. This kind of process widely occurs in the environment, both due to natural or anthropogenic
causes. Examples of gravity currents1 are oceanic overflows, avalanches, sea breeze fronts, sand
storms, oil spillages, the spread of a dense gas in the atmosphere and pollutant discharges in water
bodies.

Laboratory experiments and numerical simulations have been used to investigate the dynamics
of gravity currents. In the laboratory, steady2,3 and unsteady4–6 gravity currents are reproduced by
releasing a constant discharge or a fixed volume of a dense fluid into a lighter one, respectively. The
lock-exchange technique is a simple and useful method to generate unsteady gravity currents. In the
lock-exchange experiments, a tank divided in two volumes by a sliding gate is filled with two fluids
of different densities. When the gate is removed, a gravity current develops: the dense fluid starts to
flow along the bottom of the tank under the ambient fluid and the horizontal pressure gradient drives
the motion. The two layers start to mix and different flow regimes can be observed.7 According to the
shallow-water theory for horizontally propagating gravity currents, three phases can be developed:
a first slumping phase characterized by a constant front velocity; a second self-similar phase during
which the current slows down; and a third viscous phase if viscous forces become important.
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While lock-release gravity currents flowing over horizontal and down-sloping bottoms have
been widely studied in the literature,8–11 to the best of our knowledge, few studies on gravity currents
flowing up a slope have been carried out.12–14 This latter case is not rare in nature and deserves
investigation. Sea breeze fronts flowing over irregular coastal inlands, oceanic flows propagating
over a complex bathymetry, and the nocturnal-valley breeze are examples of gravity currents
propagating up the sloping boundaries. Marleau, Flynn, and Sutherland12 carried out laboratory
experiments on lock-release gravity currents flowing up a slope and developing the slumping phase
only. Their experiments were configured to lead the current to flow first along a horizontal bed and
then to climb up a sloping bottom. They found the deceleration to be dependent on the reduced
gravity driving the motion, the inclination of the slope, and the ratio between the initial depths
of the dense and the ambient fluids. Laboratory experiments as well as shallow water simulations
of lock-release, up-sloping gravity currents were performed by Lombardi et al.13 They found that
during the slumping phase the upslope does not affect the velocity of the front propagation, while
for later times the steeper the bottom upslope, the higher the deceleration of the current. Finally,
laboratory experiments and hydrostatic numerical simulations were carried out by Jones et al.14

to analyse the front velocity of gravity currents in a rectangular channel and V-shaped valley
propagating both horizontally and up a small slope. The literature survey shows that although a few
recent studies have investigated the effect of an upslope on a gravity current’s front propagation,
there remains a lack of knowledge on how an upslope affects entrainment and mixing in lock-release
gravity currents.

The evaluation of mixing occurring between a dense current and the ambient fluid is an
important issue since it affects the buoyancy forces driving the motion. The entrainment of ambient
fluid in gravity currents flowing over horizontal or downsloping boundaries was investigated in
both laboratory experiments and field measurements. In Cenedese and Adduce3,15 the entrainment
in a steady gravity current flowing downslope was investigated and the dependency of the
entrainment parameter on both Froude and Reynolds numbers was highlighted. The entrainment
in a lock-release, horizontally propagating gravity current flowing over a smooth and a rough
bottom was recently studied in Adduce, Sciortino, and Proietti9 and in Nogueira et al.,16,17

respectively.
The dynamics of gravity currents have been widely studied by means of simplified shallow

water models, which are often based on the assumption of mass conservation and thus entrainment
effects are not always considered. Recent investigations introduced the effect of the entrainment
in shallow water simulations of lock-release gravity currents9,13,18 and found that the entrainment
of ambient fluid affects the numerical results. In particular, in the investigations of Ross, Dalziel,
and Linden18 and Adduce, Sciortino, and Proietti,9 two-layer shallow water simulations with
and without entrainment were compared to laboratory experiments, showing a better agreement
when mixing was accounted for. Nevertheless, there is still a lack of knowledge on the suitable
entrainment parametrization to be used in the framework of simplified two-layer shallow water
models. Therefore, information on entrainment and mixing provided by three-dimensional highly
resolved numerical simulations can be used to improve two-layer shallow water models simulating
lock-release gravity currents.

The application of high-resolution numerical models to solve the Navier-Stokes equations in
the investigation of gravity currents dynamics is relatively recent. Direct Numerical Simulation
(DNS) and the computationally less expensive Large Eddy Simulations (LESs) have been used for
this purpose.19–22 Several investigations have been carried out with DNS and LES to study gravity
currents in different configurations.11,23–25 A first attempt to study the effect of an up-sloping bottom
on the development of a gravity current by LES is given by Safrai and Tkachenko.26 In this work,
two cases with an up-sloping angle were presented (θ = 5◦, θ = 10◦), showing a less energetic
three-dimensional turbulent pattern of the gravity current flowing along the up-sloping bottom,
compared to the down-sloping cases.

The aim of the present paper is to investigate entrainment and mixing in unsteady gravity
currents flowing up mild slopes using LES. The purpose is to reproduce the dynamics of geophysical
flows propagating in a deep non-bounded ambient fluid driven by buoyancy forces on complex
boundaries. Our aim is to address the following main research questions:
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1. How are the current dynamics affected by the presence of an upsloping boundary?
2. What is the effect of relevant dimensionless parameters, such as the bottom upslope, the aspect

ratio of the initial volume of the gravity current, and the depth aspect ratio, on both entrainment
and mixing in a lock-release gravity current?

3. How do the present entrainment evaluations in lock-release gravity currents flowing up a slope
compare with previous findings on gravity currents flowing over flat and downsloping bottoms?

To address the questions above, we systematically perform three-dimensional large eddy
simulations with different upslope angles (θ = 0◦, θ = 1.4◦, θ = 2.5◦, and θ = 5◦), and different
aspect ratios of the initial volume of the gravity current (R = 2, R = 1, and R = 0.67). In addition,
two simulations are performed varying the depth ratio φ in order to study partial-depth gravity
currents flowing up a slope. Laboratory experiments with θ = 0◦ and θ = 1.4◦ are also performed,
and comparisons with the numerical data are carried out in order to assess the reliability of the model
implementation. The effects related to the presence of a sloping boundary on the main dynamics
of a gravity current are investigated through the analysis of the numerical density fields. Then,
different entrainment parameters are defined and evaluated, and comparisons with the entrainment
in steady gravity currents flowing downslope are presented. Finally, mixing is evaluated through the
application of the energy budget method of Winters et al.27

The present paper is organized as follows. In Sec. II the problem formulation is presented and
the numerical model is described; in Sec. III a comparison between laboratory experiments and
numerical results is given and the main effects of the inclined bottom on the flow dynamics are
highlighted. Evaluation of the entrainment is presented in Sec. IV and the potential energy budget
is shown in Sec. V. Finally, conclusions are given in Sec. VI.

II. PROBLEM FORMULATION AND NUMERICAL MODEL

Figure 1 shows a sketch of the configuration for the simulations of lock-release gravity currents
flowing up a slope. A fluid of density ρ1 fills a volume with a lock length x0, while a light ambient
fluid of density ρ0 (with ρ0 < ρ1) fills the rest of the tank. The depths of the ambient fluid and
the dense fluid in the lock are referred to as H and h0, respectively, with H = 0.2 m. θ is the
angle between the bottom of the tank and the horizontal direction and s = tan θ is the inclination
of the bottom boundary. The aspect ratio R = h0/x0 is varied by changing x0 and three different
configurations of the initial lock volume are tested: R = 2, R = 1, and R = 0.67. Most of the
numerical simulations are run with φ = h0/H = 1, i.e., full-depth gravity currents, but two cases
with φ = 0.5 are also presented. The two fluids are initially separated by a gate and once the gate is
removed a gravity current forms: the denser fluid moves rightwards along the bottom of the tank,
while the lighter fluid moves leftwards along its top. The fluid densities ρ1 and ρ0 are chosen in
order to obtain the initial reduced gravity g′0 = 0.29 m/s2, defined as

g′0 = g
ρ1 − ρ0

ρ0
. (1)

The Reynolds number, Re, and the Froude number characterizing the slumping phase, Frsl, are
defined as

FIG. 1. Schematic view of the lock-exchange configuration in an upsloping channel.
3
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Re =
ub H
ν

, (2)

Frsl =
Usl

g′0 h0 cos θ
, (3)

where ν is the kinematic viscosity, Usl is the velocity during the slumping regime, and ub is the
buoyancy velocity, defined as

ub =


g′0 H . (4)

The simulations with φ = 1 are characterized by Re = 48 522, while the φ = 0.5 cases are
carried out with Re = 17 155. The numerical parameters are reported in Table I, together with the
parameters used in the laboratory experiments, and the latter described in Sec. III.

We use the model of Armenio and Sarkar,28 which has been widely validated and employed
over the years to simulate a large variety of flow fields.29–31 The numerical model solves the
filtered Navier-Stokes equations (the overbar in the following equations �̄ denotes the LES
filtering operation), with a finite difference second-order accurate scheme, under the Boussinesq
approximation for buoyancy effects. The governing equations read as

∂ū j

∂x j
= 0, (5)

∂ūi

∂t
+
∂ū jūi

∂x j
= − 1

ρ0

∂ p̄
∂xi
+ ν

∂2ūi

∂x j∂x j
− ρ′

ρ0
gδi j=1,2 −

∂τi j

∂x j
, (6)

∂ s̄
∂t
+
∂ū j s̄
∂x j

= ks
∂2s̄

∂x j∂x j
−
∂λ j

∂x j
, (7)

where ui denotes the velocity component in the xi direction of the computational domain (also
referred to as x, y , and z), corresponding to the streamwise, the bottom wall-normal, and the
spanwise directions, respectively. The terms p and s in (6) and (7) are the hydrodynamic pressure
and the salinity, respectively. ρ′ is the variation of density with respect to the reference value ρ0
(corresponding to the reference salinity s0). The density variation is due to the salinity concentration
gradients only, since the temperature is kept constant. Thus, the state equation reads as

ρ = ρ0 [1 + β(s − s0)], (8)

where β is the salinity contraction coefficient. ν and ks in (6) and (7) are the kinematic viscosity
and the molecular salt diffusivity, respectively. The effect of the sloping bottom on the dynamics

TABLE I. Parameters of LES and laboratory experiments.

Name θ (deg) R φ Re Frsl

RUN0 0.0 2 1 48 522 0.43
RUN1 1.4 2 1 48 522 0.42
RUN2 2.5 2 1 48 522 0.42
RUN3 5.0 2 1 48 522 0.40
RUN4 1.4 1 1 48 522 0.42
RUN5 2.5 1 1 48 522 0.41
RUN6 1.4 0.67 1 48 522 0.42
RUN7 2.5 0.67 1 48 522 0.40
RUN8 1.4 1 0.5 17 155 0.47
RUN9 2.5 1 0.5 17 155 0.47
EXP0 0.0 2 1 48 345 0.40
EXP1 1.4 2 1 48 508 0.37
EXP2 1.4 1 1 48 467 0.43
EXP3 1.4 0.67 1 48 385 0.42
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of a gravity current is reproduced in the numerical model considering the components of the
gravitational acceleration g:10,11 the first component is oriented orthogonally to the bottom, and
the second component of g is oriented along the x-axis, in the upstream direction. Thus, g acts
on the first and second components δi j (9) of the momentum equation (streamwise and bottom
wall-normal directions),

δi j =




sin θ if i = j = 1 → x−direction
cos θ if i = j = 2 → y−direction
0 if i = j = 3 → z−direction
0 if i , j

. (9)

The LES methodology consists of the separation of the large scales of motion that are directly
solved, through a three-dimensional unsteady numerical integration of the governing equations, and
the small and dissipative scales of turbulence, which are modelled as subgrid stresses (SGSs).32

The SGS momentum and salinity fluxes τi j and λ j in Equations (6) and (7) are modelled using
the dynamic Smagorinsky eddy viscosity model. Further details about the numerical model can
be found in Armenio and Sarkar.28 The Lagrangian approach of Meneveau, Lund, and Cabot33 is
used to calculate the constants of the model, needed for the estimation of the SGS viscosity and
diffusivity νt and kt. Note that in the present model, νt and kt are calculated independently according
to the dynamic methodology, and hence, the SGS Schmidt number, not set a priori, is a result of
the simulation. This is a noteworthy feature of the model, particularly when transitional flows such
as the present one are simulated. The semi-implicit fractional-step method of Zang, Street, and
Koseff34 is applied to integrate the governing equations. The time advancement of the convective
terms is calculated through the second-order Adams-Bashforth technique. The algorithm resolves
the diagonal diffusive terms through the implicit Crank-Nicolson scheme, while a second-order
centered scheme discretizes the spatial derivatives. Finally, the pressure equation is solved with a
multigrid-SOR algorithm.

In order to compare numerical simulations with the laboratory experiments, the physical
parameters are consistent with those used in the experiments. Specifically, the dimensions of the
numerical domain in the bottom wall-normal and in the spanwise directions are Ly = Lz = 0.2 m.
For computational reasons, the length of the domain in the streamwise direction is 4.096 m,
corresponding to 20.48H (comparisons with laboratory experiments and data analysis are made
only for the first 3 m). Flat, no-slip surfaces are set as boundary conditions in the streamwise
direction and at the bottom of the tank (x = 0, x = Lx and y = 0). A shear-free boundary condition
is applied at the top boundary (y = H) as suggested by Liu and Jiang35 and periodicity conditions are
employed in the spanwise direction instead of the real rigid surfaces present in the laboratory. This
allows us to focus on the effects of the up-sloping bottom without dealing with three-dimensional
effects arising from the presence of the lateral walls, and thus to investigate the dynamics of gravity
currents of large relative width. The computational grid is composed of 2048 × 128 × 64 cells,
respectively, in the streamwise, bottom wall-normal, and spanwise directions. The grid spacing is
defined as follows: ∆x = 0.01H; ∆z = 0.016H; ∆y ranges from 0.01H at the top to 0.002H at the
bottom of the domain. These spacings are quite similar to the ones used in Tokyay, Constantinescu,
and Meiburg24 in which LESs of gravity currents, characterized by Re of the same order of magnitude
as our cases, were performed. In particular, the a posteriori analysis of the velocity field ensured
that the grid spacing used is sufficient to resolve the viscous sublayer, avoiding the use of wall
layer models. Specifically, it was verified that the dimensionless grid size was ∆x+ < 50, ∆z+ < 20,
and ∆y+wall ∼ 1 at the bottom surface. The grid spacing is made non-dimensional with uτ/ν, where
uτ =


τw/ρ is calculated using the time dependent maximum wall shear stress during the evolution

of the gravity current.
A constant value of the Courant number equal to 0.6 is adopted for all simulations. The Schmidt

number Sc, defined as the ratio between the kinematic viscosity and the molecular diffusivity, is
fixed at the salt water reference value Sc = 600.

At t = 0 a spatial distribution of the scalar with a discontinuity located at x = x0 is prescribed,
with an initial density value ρ = ρ1 for x < x0 and ρ = ρ0 for x ≥ x0. Zero flux of the scalar is

5
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imposed at the boundaries. The flow field is initialized with the fluid at rest everywhere. Ten different
simulations, denoted hereafter RUN0-RUN9, were performed, varying the inclination of the bed θ,
the initial aspect ratio of the lock volume R, and the depth ratio φ.

III. NUMERICAL RESULTS AND COMPARISON WITH LABORATORY EXPERIMENTS

Laboratory experiments were performed at the Hydraulics Laboratory of the University Roma
Tre. A Plexiglas tank 3 m long, 0.2 m wide, and 0.3 m deep was used to perform the lock-exchange
experiments, similar to the one described in Nogueira et al.16,36 The tank is divided into two different
volumes by a removable gate, placed at a distance x0 from the left wall of the tank. Salty water of
density ρ1 fills the volume on the left hand side of the gate, while fresh tap water is used to fill the
rest of the tank (with a measured density ρ0 < ρ1). A controlled quantity of dye (E171, titanium
dioxide) is added to the salty water in order to assure the visibility of the dense fluid. A pycnometer
is used to measure the density. The tank can be inclined at different angles θ in order to perform
experiments of gravity currents propagating up the mild slopes. The flow generated in the laboratory
experiments is a lock-release full-depth gravity current and the aspect ratio R is varied.

The experiment starts with the removal of the gate, when the column of fluid in the lock
collapses and starts to move along the bottom of the tank. A gravity current is thus generated, and
it develops under the lighter (ambient) fluid. As the gravity current propagates downstream, the
light fluid flows upstream by continuity, and mixing occurs at the interface between the two layers:
the dense current entrains ambient fluid and dilutes.13,17 The experiments are recorded by a CCD
camera with an acquisition frequency of 25 Hz and a resolution of 768 × 576 pixels. The recorded
black and white images are first converted to matrices of grey levels with values between 0 (black)
and 255 (white), and then they are analysed using a threshold method.9,13 In this way, the position
of the interface between the dense and the light fluids is detected with an accuracy of 4 mm. Four
laboratory experiments are performed, testing two different angles θ = 0◦ and θ = 1.4◦ and three
values of R (see Table I). In addition, for two experiments (i.e., EXP0 and EXP1), the spanwise
averaged density field was measured using the technique described in Nogueira et al.16

In order to analyse the numerical data, a dimensionless density field, ρ∗, is defined as

ρ∗(x, y, z, t) = ρ(x, y, z, t) − ρ0

ρ1 − ρ0
. (10)

The gravity current studied in the present experiments is essentially two-dimensional, with
three-dimensional effects developing in the cross-sectional plane being negligible compared to the
main two-dimensional features. To detect the main features of front position, a side-view of the
advancement in time of the current is recorded during each laboratory experiment. In order to
make comparisons between three-dimensional LESs and experiments, averaged quantities along
the spanwise direction of homogeneity are considered. Hereafter, the averaging operation on the
homogeneous z-axis is shown by the symbol ⟨ ⟩. In this way, the spanwise averaged density field ⟨ρ∗⟩
is analysed, and the iso-density level corresponding to ⟨ρ∗⟩ = 0.02 is chosen as the interface between
the gravity current and the ambient fluid, in agreement with previous laboratory investigations.16,17,36

In addition, one of the objectives of the present study is to investigate the entrainment in lock-release
gravity currents in order to make a contribution to the entrainment parametrization for simplified
models which are not able to resolve the small scale mixing processes. For example, two-layer
shallow water models need to parametrize the entrainment by source or sink terms in the continuity
equations9,13,18 and the ambient fluid is assumed to not vary its density. Consequently, in the present
study, the iso-density level ⟨ρ∗⟩ = 0.02 is chosen to define the interface between the two fluids in
order to be consistent with the shallow water model formulations and, hence, considering the dense
current as the portion of the fluid that is not purely ambient fluid.

The front position x f is defined as the streamwise coordinate of the nose of the dense current,
at a distance of 4 mm from the bed. This definition is the same as in the laboratory experiments.
The numerical and experimental values of x f versus time are plotted in Figure 2(a), showing a good
agreement for all the cases considered. Figure 2(b) shows x f (t) for all the numerical simulations
performed. In Figures 2(a) and 2(b), the greater θ, the more bent the curve of x f (t), because

6
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FIG. 2. (a) Front position versus time: comparison between numerical simulations and laboratory experiments; (b) numerical
front position versus time; (c) dimensionless numerical front position versus time in log-log scale.

the gravity current slows down more abruptly. The effect of the inclination of the bottom on the
dynamics of a dense current with R = 2 becomes evident after a distance of about 9 lock-lengths
(x f > 0.9 m), when curves relative to different runs start to diverge. In RUN3 (R = 2 and θ = 5◦), the
steep inclination of the bottom prevents the density current from reaching the end-wall of the tank
and it stops at x = 2.5 m. A similar behaviour is observed in RUN9 (R = 1, φ = 0.5 and θ = 2.5◦).
In fact, the partial-depth cases slow down more effectively than the φ = 1 cases, due to the smaller
volume of dense fluid released at the beginning of the simulation. However, in all of the cases
considered, at fixed values of R and φ, the velocity of the gravity current decreases as θ increases.

In order to study the phases of development of the gravity currents,1 the dimensionless front
position x∗f and the dimensionless time T∗ are defined as

x∗f =
x f (t) − x0

x0
, (11)

T∗ =
t ub

x0
. (12)

7
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A log-log plot of x∗f versus T∗ is shown in Figure 2(c) for all simulations. The propagation of a
gravity current over a horizontal bed, according to the shallow-water theory, is commonly divided
into different phases of spreading,7 namely a slumping phase, a self-similar phase, and a final viscous
phase. The up-sloping cases are analysed here using the same scaling laws commonly adopted for
the horizontal configurations. During the slumping phase, the gravity current is characterized by a
constant front velocity. The slumping phase is clearly visible in all of the simulations of Figure 2(c)
(solid line with slope = 1). No differences are detected among the cases analysed in Figure 2(c)
during the constant velocity regime, indicating that a gentle upslope does not significantly affect
the slumping phase of lock-release gravity currents. Thus, a good agreement between the present
gravity currents flowing over mild upslopes and the shallow water theory developed for gravity
currents propagating over horizontal boundaries is found during the slumping phase. During the
self-similar phase, the current slows down and x∗f follows the theoretical power law t2/3, as shown
in Figure 2(c) by the thin solid line with slope = 2/3. Later, the front velocity decreases faster,
viscous forces influence the motion, and the slope of x∗f continuously decreases (until the current
finally stops for RUN3 and RUN9). In Figure 2(c), the thin solid line with slope = 1/5 marks the
viscous phase commonly referred to in gravity currents flowing over horizontal boundaries. A zoom
of these subsequent phases is shown in Figure 2(c) in order to better detect the differences among
the runs. Depending on R and θ, different flow regimes are observed. Nevertheless, a deceleration
of the current is visible for all of the simulations after x∗f ∼ 9. In the R = 2 cases and in the
partial-depth cases, the influence of θ during the self-similar regime is clearly visible. Moreover, at
the end of RUN3 and RUN9, the currents strongly decelerate, viscous forces influence the motion,
and a viscous phase occurs. Thus, during the slumping phase, small differences are found among
the upsloping cases analysed herein and the run propagating along a horizontal bottom, as in the
laboratory experiments of Lombardi et al.13 This behaviour is not in agreement with the results
of Marleau, Flynn, and Sutherland,12 who found a significant deceleration of the gravity current
during the slumping phase. These different findings are probably due to the different geometries of
the experimental setups and to the different slopes tested, which are here much smaller than the
ones considered in Marleau, Flynn, and Sutherland12 (values of slopes ranging from 0.25 and 1.13,
corresponding to angles between 14◦ and 48.5◦). On the other hand, a good agreement is found
with Lombardi et al.,13 which used a range of angles similar to the ones considered herein (0◦−1.8◦,
without variations of R and φ).

The post-processing of the LES data yields highly resolved spanwise-averaged density fields
of the simulated gravity currents for all runs. In order to investigate the effect of an upslope on
the propagation of the gravity current, ⟨ρ∗⟩ at T∗ � 85 is shown in Figure 3 for a fixed R = 2 and
different values of θ (RUN0-RUN3). As expected, as the upslope increases the gravity current slows
down, the thickness of the gravity current becomes smaller and smaller, and the interface between
the dense and the ambient fluids appears smoother (Figures 3(a) and 3(d)). This is all in agreement
with the reduced turbulence observed by Safrai and Tkachenko.26 In the upsloping cases, as the
dense current propagates part of the fluid in the tail region detaches from the rest of the current and
starts to flow backwards. In fact, while the head of the current flows in the positive x-axis direction,
part of the tail propagates to the left wall of the tank, where an accumulation region develops, in
agreement with Lombardi et al.13 and Marleau, Flynn, and Sutherland.12 For this reason, high values
of density are found at the beginning of the tank, and the tail region can be thicker than the head.
The backward flow is more pronounced at higher θ. For example, in RUN3, after T∗ = 85, most of
the dense fluid flows backward and stratifies at the beginning of the tank; only a thin gravity current
continues to climb up the slope, becoming thinner and thinner until it completely stops, before
reaching the right wall of the tank (Figure 3(d)).

The inevitable small differences that are observed between the numerical results and the
laboratory experiments are mainly associated with the effects of the gate removal, which is far from
the numerical ideal operation. Small influences are also related to the boundary conditions imposed
in the model, which are similar, but not equal, to the experimental conditions, especially the one
imposed at the top boundary. Nevertheless, from the analysis of the front positions (Figure 2(a)),
it is possible to say that a good level of agreement between laboratory experiments and numerical
simulations is found. In addition, as it will be discussed in Sec. IV, also the quantitative comparison

8
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FIG. 3. Dimensionless density fields for different numerical simulations (R = 2 cases) at T ∗ � 85: (a) RUN0 (θ = 0◦); (b)
RUN1 (θ = 1.4◦); (c) RUN2 (θ = 2.5◦); (d) RUN3 (θ = 5◦).

between the numerical and the laboratory entrainment parameters shows a good agreement. This
confirms that the present LESs are not only able to capture the front propagation of the gravity current,
but the increase of the current volume, due to the entrained ambient fluid, is well predicted, too.

IV. ENTRAINMENT PARAMETER

When a gravity current propagates, it entrains ambient fluid, increasing in volume. This process
can be parametrized using a dimensionless entrainment velocity as described in Cenedese and
Adduce:3 the entrainment velocity is evaluated as the flow of ambient fluid crossing the interface
between the dense current and the light fluid, per unit area. In this context, a bulk entrainment flow
Qei and a local entrainment flow Qei_local are here defined as

Qei =
(Ai − A0)d

ti − t0
, (13)

Qei_local =
(Ai − Ai−1)d

ti − ti−1
, (14)

where ti is a certain time, t0 is the initial time t = 0, and ti−1 is the former time of ti. Ai and Ai−1
are the areas under the iso-density level ⟨ρ∗⟩ = 0.02 in the x-y plane at ti and ti−1, respectively. A0
is the initial area of the dense current at t0 and d is the width of the tank. The bulk entrainment
velocity, Wei, and the local entrainment velocity, Wlei, are defined as

Wei =
Qei

Si
, (15)

Wlei =
Qei_local

1
2 (Si + Si−1)

, (16)

where the surfaces Si and Si−1 are the interfaces separating the gravity current and the ambient fluid
at ti and ti−1. Due to the complexity of the form of the real interface dividing the dense and the
ambient fluids, it is approximated here by the product (x f _i · d) at each ti.

The entrainment parameter is a dimensionless entrainment velocity. In this work, the difference
between the bulk velocity of the dense current and the bulk velocity of the ambient fluid is used as a
velocity scale.13,17,37 The bulk and the local entrainment parameters, Ebulk and Elocal, can be defined
as

Ebulk =
Wei

2 Ui
, (17)

9
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Elocal =
Wlei

(Ui +Ui−1) , (18)

where Ui and Ui−1 are the front velocities of the current at times ti and ti−1, respectively.
The entrainment parameter can be affected by the value of the iso-density threshold used to

define the interface between the ambient and the dense fluids.4 However as discussed in Sec. III,
the value of ⟨ρ∗⟩ = 0.02, used in this study, was selected in order to be consistent with previous
studies3,16,17,36 and with the two-layer shallow water approach. Variations of this threshold in the
range of 1%–5% (0.01 ≤ ⟨ρ∗⟩ ≤ 0.05) do not significantly affect the present entrainment evaluations.
In addition, mixing is also evaluated by an energy method which is not dependent on the iso-density
threshold chosen to define the interface, as shown in Sec. V.

The variation of Ebulk and Elocal versus (x f − x0)/H is shown in Figure 4 for the cases
characterized by R = 2, and in Figure 5 for the other cases analysed. Ebulk is a decreasing function of
x∗f , indicating that the rate of the entraining volume decreases in time. Even though the behaviour of
Ebulk is similar in all simulations, small differences are found in the final part of the runs. Ebulk at the
end of the simulation is related to the total volume of ambient fluid entrained by the gravity current.
An increase in θ causes a decrease of the final value of Ebulk (Figure 4). The analysis of Elocal reveals
a less smooth behaviour than Ebulk. Focusing on the cases with R = 2, two main peaks are visible
in Figures 4(a)–4(c). These peaks become more complex as the inclination of the tank increases.
The second peak is not evident in RUN3 (Figure 4(d)). The presence of local maxima in Elocal

can be related to the modification of the mixing processes during the development of the gravity
current. For gravity currents propagating over horizontal boundaries (i.e., RUN0), peaks of Elocal are
related to the trapping of ambient fluid into the body of the dense current due to the development of
Kelvin-Helmholtz billows. Qualitatively, similar features are also observed in the gravity currents
propagating up a slope. When the billows grow in size and in intensity, light fluid is captured in
their structures causing an increase of volume, i.e., fluid-trapping process. In the up-sloping cases,
the dense current slows down due to the action of gravity and becomes thinner. The shear stress at
the interface between the dense fluid and the ambient one decreases with the decrease of the speed
of the dense flow, and the resulting instabilities are less intense. The differences in the conformation
of the instabilities make the local entrainment parameter more irregular with the increase of θ.

FIG. 4. Bulk entrainment parameter (black line) and local entrainment parameter (grey line) versus the dimensionless front
position for R = 2 cases: (a) RUN0; (b) RUN1; (c) RUN2; (d) RUN3.

10
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FIG. 5. Bulk entrainment parameter (black line) and local entrainment parameter (grey line) versus the dimensionless front
position: (a) RUN4, (b) RUN5, (c) RUN6, (d) RUN7, (e) RUN8, and (f) RUN9.

A similar behaviour is observed in the cases with R ≤ 1 (Figure 5). The final values of the
bulk entrainment parameter, at fixed θ, increase for small values of R. On the other hand, the peaks
in Elocal are less pronounced in the cases with R = 0.67 than in the cases with R = 2, indicating
that the fluid-trapping process described above occurs less frequently. However, the total amount
of ambient fluid entrained by the dense current is larger in the R = 0.67 cases than in R = 2 cases.
A similar trend was observed by Ottolenghi et al.31 for gravity currents flowing over a flat bed. A
discontinuous behaviour of the local entrainment parameter, characterized by the presence of two
peaks, is also visible in the φ = 0.5 cases (Figures 5(e) and 5(f)). For a fixed θ and R, the final
value of Ebulk is lower in the partial-depth cases (Figures 5(e) and 5(f)) than in the full-depth cases
(Figures 5(a) and 5(b)). Furthermore, both Ebulk and Elocal decrease faster in the φ = 0.5 cases than
in the φ = 1 cases. Finally, in all of the simulations performed, for a fixed R, both Ebulk and Elocal

decrease with the increase of the slope of the bottom θ.
Studies conducted in a wide range of experimental conditions emphasized the dependence of

the entrainment parameter on both Reynolds and Froude numbers.3,15 In addition, the total amount of
entrained fluid was observed to also depend on the length of the path followed by the dense current.3

Figure 6 shows the values of the bulk entrainment parameter at the end of all the simulations versus
Reynolds and Froude numbers and the bed’s slope. The bulk entrainment parameters evaluated in
the laboratory for EXP0 and EXP1 are also reported in the same figure. In RUN3 there are no
available values of Ebulk for x f > 2.5 m because the dense current stops before reaching the end-wall
of the tank. In order to have comparable values of the final bulk entrainment parameter, Ebulk is

11
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FIG. 6. Numerical and experimental bulk entrainment evaluated after the current has travelled for 2.4 m versus (a) bulk
Froude number, (b) bulk Reynolds number, and (c) slope of the bed.

considered after the current flowed 2.4 m in all cases. Bulk Froude, Fr, and Reynolds, Reb, numbers
can be defined, respectively, as

Fr =
U

g′m
h0
2 cos θ

, (19)

Reb =
U h0/2

ν
, (20)

where g′m is the mean value of the reduced gravity between the initial and the final configuration of
the gravity current, and U is a velocity scale defined as the ratio between a length scale L and a time
scale T . L is chosen as L = 2.4 m and T is the time taken by the gravity current to travel a distance
of 2.4 m. Ebulk at the end of all the simulations is of the order of magnitude of 10−2, in agreement
with Adduce, Sciortino, and Proietti9 and Nogueira et al.,17 who investigated the entrainment in
lock-release gravity currents. In addition, the entrainment parameters predicted by the LESs for
RUN0 and RUN1 are in good agreement with the measured ones. The present numerical simulations
are not only able to capture the front propagation (as shown in Sec. III) but also the final amount
of the entrained ambient fluid. This latter result gives an additional confirmation of the reliability
of the present numerical results. The dependence of Ebulk on Reb and on Fr, in agreement with the
previous findings of Cenedese and Adduce3 and Nogueira et al.,17 is also verified in the present
runs, as shown in Figures 6(a) and 6(b), respectively: Ebulk increases as Fr or Reb increases. In
Figure 6(c), the entrainment parameter decreases with s, because an increase in the bed upslope
produces a decrease of both Reb and Fr (Figures 6(a) and 6(b)). Figure 6(c) shows that, at fixed
R, the entrainment decreases with an increase in θ. In addition, for a fixed θ, Ebulk is lower in the
R > 1 cases than in the cases with R ≤ 1: if R decreases, Fr and Reb increase and Ebulk increases
as a consequence. Thus, a dependence of the entrainment parameter on both θ and R is observed.
Finally, the partial-depth cases show smaller values of the entrainment parameter than the φ = 1
cases.

The same values of Ebulk plotted in Figure 6 are reported in Figure 7 together with previous
laboratory2,3,38–40 and field41–45 entrainment evaluations. Present entrainment parameters refer to
density currents produced by the lock-exchange technique, i.e., unsteady density currents, while the
experimental results shown in Figure 7 refer to density currents produced by a continuous source
of salty water, i.e., steady density currents flowing downslope. Figure 7 shows that the entrainment
parameter of the present study, i.e., unsteady density currents (with 1615 < Reb < 10 010 and
0.24 < Fr < 0.74), has the same order of magnitude (E ∼ 10−2) as that found for steady density
currents with higher Fr (1 < Fr < 6) and lower Reb (40 < Reb < 1386). Thus, the dependence
of Ebulk on both Reb and Fr is confirmed, because the order of magnitude of the entrainment
parameter of the present simulations is comparable to the entrainment of gravity currents generated
by different experimental procedures and characterized by different values of Fr and Reb. In
addition, in agreement with previous studies,2,3,9,17 Figure 7 shows the occurrence of mixing also
for subcritical flows (Fr2 < 1.25), not included in the entrainment parametrization of Turner.46

Finally, the empirical entrainment relation adopted in Adduce, Sciortino, and Proietti,9 two-layer
12
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FIG. 7. Bulk entrainment parameter versus Fr: comparison of present numerical and experimental results with previous field
data (solid symbols), laboratory measurements (open symbols), shaded areas for experiments by Ellison and Turner39 and
Alavian,40 entrainment laws suggested by Turner46 (dashed line), and Adduce, Sciortino, and Proietti9 (solid line).

shallow water simulations of lock-release gravity currents, agrees with the present entrainment
evaluations.

V. POTENTIAL ENERGY BUDGET AND IRREVERSIBLE MIXING

The potential energy budget is a useful method for the evaluation of irreversible mixing
processes, as shown in Winters et al.,27 and was successfully used to investigate the dynamics of
lock-release gravity currents moving over horizontal boundaries.47 This method of Winters et al.27

is herein applied for the first time to analyse mixing in gravity currents propagating up a slope. In
the present case, the potential energy Ep is defined as

Ep (t) = g


V

⟨ρ (x, y, t)⟩ l dV, (21)

where V is the entire volume of the fluid, l is the vertical distance from a horizontal plane of
reference, and ⟨ρ⟩ is the spanwise averaged density field (Figures 8(a) and 8(c)). Ep can be affected
by adiabatic processes (without exchanges of heat or mass) and by diabatic ones. The background
potential energy Eb is here defined as

Eb (t) = g


V

⟨ ρ̃ (x, y, t)⟩ l dV, (22)

where ⟨ ρ̃⟩ is the spanwise averaged density field, corresponding to the minimum state of the
potential energy (Figures 8(b) and 8(d)). Thus, Eb can be evaluated from a spatial redistribution of
the fluid particles in a stable horizontally stratified configuration, attained by means of adiabatic
processes. Provided that spanwise gradients of ρ are not large compared with streamwise gradients,
the quantities Ep and Eb calculated using ⟨ρ⟩ and ⟨ ρ̃⟩ can be a useful approximation of Ep and Eb

defined in Winters et al.27,47,48 The available potential energy Ea is defined as the difference between
13
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FIG. 8. Energy budget method. (a) Distribution of ⟨ρ⟩ in RUN0 (θ = 0◦, R = 2) for the evaluation of Ep at T ∗= 93.8;
(b) distribution of ⟨ρ̃⟩ in RUN0 for the evaluation of Eb at T ∗= 93.8; (c) distribution of ⟨ρ⟩ in RUN3 (θ = 5◦, R = 2) for the
evaluation of Ep at T ∗= 46.1; (d) distribution of ⟨ρ̃⟩ in RUN3 for the evaluation of Eb at T ∗= 46.1.

Ep and Eb,

Ea (t) = Ep (t) − Eb (t) . (23)

In Figure 8, two density distributions ⟨ρ⟩ and the corresponding ⟨ ρ̃⟩ are shown for RUN0 and
RUN3. Adiabatic processes can modify Ep through a redistribution of ρ in a different configuration,
without altering the background energy. In this way, changes in the distribution of density are related
to changes in Ea and Eb.27 Specifically, conversion of potential energy into kinetic energy, caused
by adiabatic reversible processes, can be analysed using the available potential energy Ea. On the
other hand, variation in Eb can be used to highlight the occurrence of irreversible mixing.

The potential energy budget versus x∗f is shown in Figure 9 for the different cases characterized
by R = 2, with Ep, Eb, and Ea normalized so that the minimum of Eb at the initial time is zero, and
the maximum of Ep at t = 0 is equal to 1. The potential energy budget for the other simulations
(not displayed) shows a behaviour similar to the one observed in Figure 9. From Figure 9, it is
apparent that the three contributions are affected by the bottom upslope. Figure 9(a) describes the
evolution of the potential energies for a horizontal gravity current. During the slumping phase,
Ep rapidly decreases as the front of the gravity current advances and Eb increases with x∗f ,
indicating the occurrence of irreversible mixing processes. After the slumping phase, both Ep and
Eb vary monotonically: Ep decreasing and Eb increasing almost linearly. As a result, Ea decreases
monotonically with x∗f (Figure 9(a)).

In RUN1, RUN2, and RUN3 (R = 2, θ , 0), energy contributions are substantially different
from the horizontal case. After the current forms in the first two lock-lengths, the potential energy
increases with x∗f (Figures 9(b)-9(d)), as the nose of the current climbs up the slope. Specifically,
during the run with the steepest inclination of the bottom shown in Figure 9(d), Eb increases sharply
for x∗f < 10. From the beginning of the self-similar phase on, Ep ceases growing and begins to
decrease. The curvature of the time evolution of Eb changes compared with the previous cases,
eventually approaching a horizontal asymptote at the end of the simulation. During the slumping
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FIG. 9. Potential energy budget for the runs with R = 2. Potential energy (solid line), background potential energy (dashed
line), and available potential energy (grey line) versus x∗f . (a) RUN0 (θ = 0◦); (b) RUN1 (θ = 1.4◦); (c) RUN2 (θ = 2.5◦); and
(d) RUN3 (θ = 5◦).

phase, the rate of increase of Eb in RUN3 is much larger than in the horizontal case due to the
different equilibrium configuration of the spatial density distribution (Figures 8(b) and 8(d)). While
a gravity current propagates up a slope, a reverse flow occurs, accumulating dense fluid at the
left wall of the tank, and causing Eb to increase substantially: heavy fluid is present at higher
vertical levels than in the horizontal case. At the same time, the reverse flow weakens the forward
propagating gravity current reducing Ep in the self-similar phase. At the end of the simulation, the
residual current stops flowing forward and the accumulated fluid stratifies in the minimal potential
energy configuration, making Ep and Eb almost identical.

The curves of Eb versus x∗f for all the R = 2 cases are shown in Figure 10(a). In the horizontal
case, Eb increases in a quasi-linear way with x∗f . Conversely, for the other cases, the curve of Eb

approximates the logarithmic behaviour and, the steeper the bed upslope, the faster Eb approaches a
horizontal asymptote. During the slumping phase, the slope of Eb is higher for the up-sloping cases,
while it decreases with the inclination of the bottom during the self-similar phase. This is connected
to the different equilibrium configurations of the horizontal and the upsloping cases (Figures 8(b)
and 8(d)) and obviously does not indicate an increase of irreversible mixing related to the increase
of the bed slope.

In order to make the different runs comparable among them in terms of irreversible mixing, the
quantity EbH is calculated by redistributing the fluid particles at the minimum of Ep in a tank with
a horizontal bed. In this way, only the changes in the pdf of ρ are highlighted. In Figure 10(b), EbH

is plotted and is calculated distributing the density particles at the minimum of Ep on a horizontal
bottom for all the R = 2 cases. In this way, the accumulation area does not affect EbH and the
different runs can be compared. During the slumping phase, small differences are detected between
the different configurations. In the following times (x∗f > 8), the curves of the different upslopes
diverge. Changes in EbH are always visible during all of the simulations, indicating the presence of
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FIG. 10. Background potential energy versus x∗f . (a) Eb calculated with the real inclined bottom for the cases with R = 2;
(b) EbH calculated with an equivalent horizontal bottom for the cases with R = 2; (c) EbH for the cases with R = 1; (d) EbH

for the cases with R = 0.67; and (e) EbH for the cases with R = 1 and φ = 0.5.

mixing both in the slumping and in the self-similar phases. The inclination of the curve of EbH is
higher for RUN1 than for RUN3, showing that, as expected, the irreversible mixing is more efficient
when the bed upslope is small. Figures 10(c)-10(e) show EbH versus x∗f in the other simulations,
namely, the R = 1, R = 0.67, and the φ = 0.5 cases, respectively. A lower inclination of EbH as θ
increases is visible in all of the cases tested. Thus, in all of the initial configurations considered,
a faster variation of EbH is visible for low values of θ than in the cases with high values of θ,
indicating the occurrence of more pronounced irreversible mixing processes when the upslope is
small. The influence of R on mixing is detectable by comparing, for fixed values of θ, the slopes of
the curves of EbH in Figures 10(b)–10(d): mixing increases as R decreases. Finally, Figures 10(c)
and 10(e) show the effect of φ on mixing: a lower irreversible mixing occurs in the partial-depth
cases than in the full-depth ones.

VI. CONCLUSIONS

Entrainment and mixing in gravity currents propagating up a sloping bottom were investigated
in this paper through large eddy simulations. Three parameters, namely, the angle between the
bottom boundary and the horizontal direction θ, the aspect ratio of the initial volume of the dense
fluid in the lock R, and the depth ratio φ, were considered and the effect of their variation on
both the dynamics of the current and mixing was discussed. Laboratory experiments were also
realized in order to assess the reliability of the implementation of the numerical model and a good
agreement between the numerical results and the laboratory measurements was found, for both the
front propagation and the bulk entrainment parameter.

16



056604-17 Ottolenghi et al. Phys. Fluids 28, 056604 (2016)

The classical features of a gravity current were observed in all of the cases herein simulated,
with the transition through the different flow regimes known in the literature for horizontally
propagating gravity currents. Overall, a first conclusion of this study is that the dynamics of a
lock-release gravity current are affected by the presence of an upslope, which causes a reduction in
the current front velocity and the occurrence of an accumulation region of dense stratified fluid in
the initial part of the tank. For fixed values of R and φ, a decrease in the front velocity with the
increase in the steepness of the bottom was observed. For the upsloping cases, a thinner profile of
the dense current and smoother interface between the dense and the ambient fluids were detected
when compared with the horizontal case.

Entrainment and mixing were investigated by using two different approaches: two entrainment
parameters were defined (Elocal and Ebulk) and the energy budget method of Winters et al.27 was
applied. The entrainment parameters were found to depend on both Fr and Re and as the bottom
upslope increased, a decrease in the entrained ambient fluid was observed. At the end of all
the simulations, Ebulk reached values of the order of 10−2, in agreement with previous studies.
An increase in the aspect ratio of the lock was associated with a decrease in the entrainment
parameter; partial-depth gravity currents revealed the occurrence of less vigorous entrainment
processes. In addition, the present entrainment evaluations of subcritical lock-release gravity
currents, characterized by high Re, had an order of magnitude of 10−2, which was in agreement
with previous findings on the entrainment of steady supercritical gravity currents down a slope,
characterized by a lower Re. Finally, the potential energy of the flow was analysed, through the
application of the energy budget method of Winters et al.27 in order to detect irreversible mixing
processes occurring during the development of the current. The application of this method confirmed
that all of the parameters varied in the present study (R, θ, and φ) affect mixing, in agreement with
the findings on entrainment. Irreversible mixing processes were observed during the entire time
evolution of the gravity current for all cases investigated. During the slumping phase, the effect of
the bottom upslope on mixing was negligible. On the other hand, during the self-similar phase as
the bottom upslope increased, less effective mixing occurred. Finally, mixing was found to decrease
as R increases, and low mixing occurs in partial-depth gravity currents, i.e., φ < 1, if compared with
the full-depth ones, i.e., φ = 1.
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