262 research outputs found

    Critical Current 0-π\pi Transition in Designed Josephson Quantum Dot Junctions

    Full text link
    We report on quantum dot based Josephson junctions designed specifically for measuring the supercurrent. From high-accuracy fitting of the current-voltage characteristics we determine the full magnitude of the supercurrent (critical current). Strong gate modulation of the critical current is observed through several consecutive Coulomb blockade oscillations. The critical current crosses zero close to, but not at, resonance due to the so-called 0-π\pi transition in agreement with a simple theoretical model.Comment: 5 pages, 4 figures, (Supplementary information available at http://www.fys.ku.dk/~hij/public/nl_supp.pdf

    Singlet-Triplet Physics and Shell Filling in Carbon Nanotube Double Quantum Dots

    Full text link
    An artifcial two-atomic molecule, also called a double quantum dot (DQD), is an ideal system for exploring few electron physics. Spin-entanglement between just two electrons can be explored in such systems where singlet and triplet states are accessible. These two spin-states can be regarded as the two states in a quantum two-state system, a so-called singlet-triplet qubit. A very attractive material for realizing spin based qubits is the carbon nanotube (CNT), because it is expected to have a very long spin coherence time. Here we show the existence of a gate-tunable singlet-triplet qubit in a CNT DQD. We show that the CNT DQD has clear shell structures of both four and eight electrons, with the singlet-triplet qubit present in the four-electron shells. We furthermore observe inelastic cotunneling via the singlet and triplet states, which we use to probe the splitting between singlet and triplet, in good agreement with theory.Comment: Supplement available at: http://www.fys.ku.dk/~hij/public/singlet-triple_supp.pd

    Inter-modal Raman amplification of OAM fiber modes

    Get PDF
    Raman scattering among conventional linearly polarized (LP) modes in single mode optical fibers is generally accepted as a promising way to achieve distributed amplification due to the fact that Raman amplification may provide gain at any wavelength, determined by the used pump wavelength, and excellent noise performance. Here, we show that Raman scattering among orbital angular momentum (OAM) modes in optical fibers have similar properties. We show theoretically that the Raman gain among OAM modes is independent on the topological charge of the OAM modes and that the gain efficiency when the pump and signal are parallel (orthogonally) polarized is similar to the Raman scattering among LP modes in parallel (orthogonal) states of polarization. In addition, we experimentally characterize Raman gain among OAM modes in a fiber supporting multiple OAM modes for both the pump and signal. Finally, we discuss the impact of polarization mode dispersion

    Fiber mode excitation using phase-only spatial light modulation: Guideline on free-space path design and lossless optimization

    Get PDF
    Phase-only spatial light modulators allow to reshape a Gaussian beam by imposing a given phase distribution along the beam cross section. This technique is widely used in the context of mode-division multiplexing to produce, after propagation through a free-space path, the field designed to excite a given fiber mode. In case of orbital angular momentum modes, the target field is approximated as circularly polarized and several complex algorithms have been developed to increase the purity of the obtained modes. Besides their complexity, those algorithms often exploit higher-order diffraction and spatial filtering, hence entailing power loss. In the theoretical work described here, the mode purity is increased in a simple and efficient way by improving the mode approximation adopted to obtain circularly polarized modes and by optimizing two free parameters in the setup, as demonstrated through pertinent simulations

    Housekeeping genes for quantitative expression studies in the three-spined stickleback Gasterosteus aculeatus

    Get PDF
    Background During the last years the quantification of immune response under immunological challenges, e.g. parasitation, has been a major focus of research. In this context, the expression of immune response genes in teleost fish has been surveyed for scientific and commercial purposes. Despite the fact that it was shown in teleostei and other taxa that the gene for beta-actin is not the most stably expressed housekeeping gene (HKG), depending on the tissue and experimental treatment, the gene has been us Results To establish a reliable method for the measurement of immune gene expression in Gasterosteus aculeatus, sequences from the now available genome database and an EST library of the same species were used to select oligonucleotide primers for HKG, in order to perform quantitative reverse-transcription (RT) PCR. The expression stability of ten candidate reference genes was evaluated in three different tissues, and in five parasite treatment groups, using the three algorithms BestKeeper, geNorm and N Conclusion As they were the most stably expressed genes in all tissues examined, we suggest using the genes for the L13a ribosomal binding protein and ubiquitin as alternative or additional reference genes in expression analysis in Gasterosteus aculeatus.

    Angiopoietin-like protein 4 is an exercise-induced hepatokine in humans, regulated by glucagon and cAMP

    Get PDF
    Objective: Angiopoietin-like protein-4 (ANGPTL4) is a circulating protein that is highly expressed in liver and implicated in regulation of plasma triglyceride levels. Systemic ANGPTL4 increases during prolonged fasting and is suggested to be secreted from skeletal muscle following exercise. Methods: We investigated the origin of exercise-induced ANGPTL4 in humans by measuring the arterial-to-venous difference over the leg and the hepato-splanchnic bed during an acute bout of exercise. Furthermore, the impact of the glucagon-to-insulin ratio on plasma ANGPTL4 was studied in healthy individuals. The regulation of ANGPTL4 was investigated in both hepatic and muscle cells. Results: The hepato-splanchnic bed, but not the leg, contributed to exercise-induced plasma ANGPTL4. Further studies using hormone infusions revealed that the glucagon-to-insulin ratio is an important regulator of plasma ANGPTL4 as elevated glucagon in the absence of elevated insulin increased plasma ANGPTL4 in resting subjects, whereas infusion of somatostatin during exercise blunted the increase of both glucagon and ANGPTL4. Moreover, activation of the cAMP/PKA signaling cascade let to an increase in ANGPTL4 mRNA levels in hepatic cells, which was prevented by inhibition of PKA. In humans, muscle ANGPTL4 mRNA increased during fasting, with only a marginal further induction by exercise. In human muscle cells, no inhibitory effect of AMPK activation could be demonstrated on ANGPTL4 expression. Conclusions: The data suggest that exercise-induced ANGPTL4 is secreted from the liver and driven by a glucagon-cAMP-PKA pathway in humans. These findings link the liver, insulin/glucagon, and lipid metabolism together, which could implicate a role of ANGPTL4 in metabolic diseases

    Beta cell dysfunction induced by bone morphogenetic protein (BMP)-2 is associated with histone modifications and decreased NeuroD1 chromatin binding

    Get PDF
    Insufficient insulin secretion is a hallmark of type 2 diabetes and has been attributed to beta cell identity loss characterized by decreased expression of several key beta cell genes. The pro-inflammatory factor BMP-2 is upregulated in islets of Langerhans from individuals with diabetes and acts as an inhibitor of beta cell function and proliferation. Exposure to BMP-2 induces expression of Id1-4, Hes-1, and Hey-1 which are transcriptional regulators associated with loss of differentiation. The aim of this study was to investigate the mechanism by which BMP-2 induces beta cell dysfunction and loss of cell maturity. Mouse islets exposed to BMP-2 for 10 days showed impaired glucose-stimulated insulin secretion and beta cell proliferation. BMP-2-induced beta cell dysfunction was associated with decreased expression of cell maturity and proliferation markers specific to the beta cell such as Ins1, Ucn3, and Ki67 and increased expression of Id1-4, Hes-1, and Hey-1. The top 30 most regulated proteins significantly correlated with corresponding mRNA expression. BMP-2-induced gene expression changes were associated with a predominant reduction in acetylation of H3K27 and a decrease in NeuroD1 chromatin binding activity. These results show that BMP-2 induces loss of beta cell maturity and suggest that remodeling of H3K27ac and decreased NeuroD1 DNA binding activity participate in the effect of BMP-2 on beta cell dysfunction

    An in vitro evaluation of standard rotational thromboelastography in monitoring of effects of recombinant factor VIIa on coagulopathy induced by hydroxy ethyl starch

    Get PDF
    BACKGROUND: Rotational thromboelastography (ROTEG) has been proposed as a monitoring tool that can be used to monitor treatment of hemophilia with recombinant factor VIIa (rFVIIa). In these studies special non-standard reagents were used as activators of the coagulation. The aim of this study was to evaluate if standard ROTEG analysis could be used for monitoring of effects of recombinant factor VIIa (rFVIIa) on Hydroxy Ethyl Starch-induced dilutional coagulopathy. METHODS: The study was performed in vitro on healthy volunteers. Prothrombin time (PT) and ROTEG analysis were performed after dilution with 33% hydroxy ethyl starch and also after addition of rFVIIa to the diluted blood. RESULTS: PT was impaired with INR changing from 0.9 before dilution to 1.2 after dilution while addition of rFVIIa to diluted blood lead to an overcorrection of the PT to an International Normalized Ratio (INR) value of 0.6 (p = 0.01). ROTEG activated with the contact activator ellagic acid was impaired by hemodilution (p = 0.01) while addition of rFVIIa had no further effects. ROTEG activated with tissue factor (TF) was also impaired by hemodilution (p = 0.01) while addition of rFVIIa lead to further impairment of the coagulation (p = 0.01). CONCLUSIONS: The parameters affected in the ROTEG analysis were Clot Formation Time and Amplitude after 15 minutes while the Clotting Time was unaffected. We believe these effects to be due to methodological problems when using standard activators of the coagulation in the ROTEG analysis in combination with rFVIIa
    corecore