303 research outputs found

    Interpreting Quality-of-Life Questionnaires in Patients with Long-Standing Facial Palsy

    Get PDF
    Objective(s): To interpret change in quality-of-life scores in facial palsy patients by calculating the smallest detectable change (SDC) and minimal important change (MIC) for the Facial Disability Index (FDI), Facial Clinimetric Evaluation (FaCE) scale, and Synkinesis Assessment Questionnaire (SAQ). Materials and Methods: The SDC, for individuals and groups, was calculated using previously collected test-retest data (2-week interval). The MIC (predictive modeling method) was calculated in a second similar facial palsy population using two measurements (1-1.5-year interval) and an anchor question assessing perceived change. Results: SDC(individual) of FaCE was 17.6 and SAQ was 28.2. SDC(group) of FaCE was 2.9 and SAQ was 4.6 (n = 62). Baseline FaCE and SAQ scores were 43.3 (interquartile range [IQR]: 35.8;55.0) and 51.1 (IQR: 32.2;60.0), respectively. MIC for important improvement of FDI physical/social function, FaCE total, and SAQ total were 4.4, 0.4, 0.7, and 2.8, respectively (n = 88). MIC for deterioration was 8.2, -1.8, -8.5, and 0.6, respectively. Baseline scores were 70.0 (IQR: 60.0;80.0), 76.0 (68.0;88.0), 55.0 (IQR: 40.0;61.7), and 26.7 (IQR: 22.2;35.6), respectively. Number of participants reporting important change for the different questionnaires ranged from 3 to 23 per subscale. Conclusion: Interpreting change scores of the FDI, FaCE, and SAQ is appropriate for groups, but for individual patients it is limited by a substantial SDC

    The effect of pure mitral regurgitation on mitral annular geometry and three-dimensional saddle shape

    Get PDF
    ObjectiveChronic ischemic mitral regurgitation is associated with mitral annular dilatation in the septal-lateral dimension and flattening of the annular 3-dimensional saddle shape. To examine whether these perturbations are caused by the ischemic insult, mitral regurgitation, or both, we investigated the effects of pure mitral regurgitation (low pressure volume overload) on annular geometry and shape.MethodsEight radiopaque markers were sutured evenly around the mitral annulus in sheep randomized to control (CTRL, n = 8) or experimental (HOLE, n = 12) groups. In HOLE, a 3.5- to 4.8-mm hole was punched in the posterior leaflet to generate pure mitral regurgitation. Four-dimensional marker coordinates were obtained radiographically 1 and 12 weeks postoperatively. Mitral annular area, annular septal-lateral and commissure–commissure dimensions, and annular height were calculated every 16.7 ms.ResultsMitral regurgitation grade was 0.4 ± 0.4 in CTRL and 3.0 ± 0.8 in HOLE (P < .001) at 12 weeks. End-diastolic left ventricular volume index was greater in HOLE at both 1 and 12 weeks; end-systolic volume index was larger in HOLE at 12 weeks. Mitral annular area increased in HOLE predominantly in the commissure–commissure dimension, with no difference in annular height between HOLE versus CTRL at 1 or 12 weeks, respectively.ConclusionIn contrast with annular septal-lateral dilatation and flattening of the annular saddle shape observed with chronic ischemic mitral regurgitation, pure mitral regurgitation was associated with commissure–commissure dimension annular dilatation and no change in annular shape. Thus, infarction is a more important determinant of septal-lateral dilatation and annular shape than mitral regurgitation, which reinforces the need for disease-specific designs of annuloplasty rings

    Major impacts of climate change on deep-sea benthic ecosystems

    Get PDF
    The deep sea encompasses the largest ecosystems on Earth. Although poorly known, deep seafloor ecosystems provide services that are vitally important to the entire ocean and biosphere. Rising atmospheric greenhouse gases are bringing about significant changes in the environmental properties of the ocean realm in terms of water column oxygenation, temperature, pH and food supply, with concomitant impacts on deep-sea ecosystems. Projections suggest that abyssal (3000–6000 m) ocean temperatures could increase by 1°C over the next 84 years, while abyssal seafloor habitats under areas of deep-water formation may experience reductions in water column oxygen concentrations by as much as 0.03 mL L–1 by 2100. Bathyal depths (200–3000 m) worldwide will undergo the most significant reductions in pH in all oceans by the year 2100 (0.29 to 0.37 pH units). O2 concentrations will also decline in the bathyal NE Pacific and Southern Oceans, with losses up to 3.7% or more, especially at intermediate depths. Another important environmental parameter, the flux of particulate organic matter to the seafloor, is likely to decline significantly in most oceans, most notably in the abyssal and bathyal Indian Ocean where it is predicted to decrease by 40–55% by the end of the century. Unfortunately, how these major changes will affect deep-seafloor ecosystems is, in some cases, very poorly understood. In this paper, we provide a detailed overview of the impacts of these changing environmental parameters on deep-seafloor ecosystems that will most likely be seen by 2100 in continental margin, abyssal and polar settings. We also consider how these changes may combine with other anthropogenic stressors (e.g., fishing, mineral mining, oil and gas extraction) to further impact deep-seafloor ecosystems and discuss the possible societal implications

    A Longitudinal Analysis of Volunteerism Activities for Individuals Educated in Public and Private Schools

    Get PDF
    Previous studies offer evidence that U.S. public and private high schools differentially influence volunteerism in adolescence. However, these studies are typically cross-sectional and only consider whether the individual volunteered or not. We address patterns of volunteering from adolescence into adulthood and the kind of volunteering activity in which individuals engage. We also theorize that distinctive civic values within public and private schools together with their respective organizational ties to other civic organizations channel students into particular volunteering activities. Relying on a longitudinal, nationally-representative sample of U.S. adolescents, we track volunteering from adolescence into young adulthood and identify the types of volunteering activities in which respondents engage. Results demonstrate that the likelihood of volunteering changes through the life course, and students from different schooling backgrounds systematically sort into specific volunteering activities as our theories predict

    Open Ocean Deep Sea

    Get PDF
    The deep sea comprises the seafloor, water column and biota therein below aspecified depth contour. There are differences in views among experts and agencies regarding the appropriate depth to delineate the “deep sea”. This chapter uses a 200 metre depth contour as a starting point, so that the “deep sea” represents 63 per cent of the Earth’s surface area and about 98.5 per cent of Earth’s habitat volume (96.5 per cent of which is pelagic). However, much of the information presented in this chapter focuses on biodiversity of waters substantially deeper than 200 m. Many of the other regional divisions of Chapter 36 include treatments of shelf and slope biodiversity in continental-shelf and slope areas deeper than 200m. Moreover Chapters 42 and 45 on coldwater corals and vents and seeps, respectively, and 51 on canyons, seamounts and other specialized morphological habitat types address aspects of areas in greater detail. The estimates of global biodiversity of the deep sea in this chapter do include all biodiversity in waters and the seafloor below 200 m. However, in the other sections of this chapter redundancy with the other regional chapters is avoided, so that biodiversity of shelf, slope, reef, vents, and specialized habitats is assessed in the respective regional or thematic chapters. AB - The deep sea comprises the seafloor, water column and biota therein below aspecified depth contour. There are differences in views among experts and agencies regarding the appropriate depth to delineate the “deep sea”. This chapter uses a 200 metre depth contour as a starting point, so that the “deep sea” represents 63 per cent of the Earth’s surface area and about 98.5 per cent of Earth’s habitat volume (96.5 per cent of which is pelagic). However, much of the information presented in this chapter focuses on biodiversity of waters substantially deeper than 200 m. Many of the other regional divisions of Chapter 36 include treatments of shelf and slope biodiversity in continental-shelf and slope areas deeper than 200m. Moreover Chapters 42 and 45 on coldwater corals and vents and seeps, respectively, and 51 on canyons, seamounts and other specialized morphological habitat types address aspects of areas in greater detail. The estimates of global biodiversity of the deep sea in this chapter do include all biodiversity in waters and the seafloor below 200 m. However, in the other sections of this chapter redundancy with the other regional chapters is avoided, so that biodiversity of shelf, slope, reef, vents, and specialized habitats is assessed in the respective regional or thematic chapters.https://nsuworks.nova.edu/occ_facbooks/1050/thumbnail.jp

    Meiofauna in the Gollum Channels and the Whittard Canyon, Celtic Margin—How Local Environmental Conditions Shape Nematode Structure and Function

    Get PDF
    The Gollum Channels and Whittard Canyon (NE Atlantic) are two areas that receive high input of organic matter and phytodetritus from euphotic layers, but they are typified by different trophic and hydrodynamic conditions. Sediment biogeochemistry was analysed in conjunction with structure and diversity of the nematode community and differences were tested between study areas, water depths (700 m vs 1000 m), stations, and sediment layers. The Gollum Channels and Whittard Canyon harboured high meiofauna abundances (1054–1426 ind. 10 cm−2) and high nematode diversity (total of 181 genera). Next to enhanced meiofauna abundance and nematode biomass, there were signs of high levels of organic matter deposition leading to reduced sedimentary conditions, which in turn structured the nematode community. Striking in this respect was the presence of large numbers of ‘chemosynthetic’ Astomonema nematodes (Astomonema southwardorum, Order Monhysterida, Family Siphonolaimidae). This genus lacks a mouth, buccal cavity and pharynx and possesses a rudimentary gut containing internal, symbiotic prokaryotes which have been recognised as sulphur-oxidising bacteria. Dominance of Astomonema may indicate the presence of reduced environments in the study areas, which is partially confirmed by the local biogeochemical environment. The nematode communities were mostly affected by sediment layer differences and concomitant trophic conditions rather than other spatial gradients related to study area, water depth or station differences, pointing to small-scale heterogeneity as the main source of variation in nematode structure and function. Furthermore, the positive relation between nematode standing stocks, and quantity and quality of the organic matter was stronger when hydrodynamic disturbance was greater. Analogically, this study also suggests that structural diversity can be positively correlated with trophic conditions and that this relation is tighter when hydrodynamic disturbance is greater

    The value of spreader grafts in rhinoplasty: a critical review

    Get PDF
    The value of spreader grafts in rhinoplasty cannot be underestimated. Various studies have demonstrated that they play a valuable role in the restoration of nasal dorsum aesthetics, provide support for the nasal valve and maintain the straightened position of the corrected deviated cartilaginous septal dorsum. However, there is still controversy on the extent of its value in nasal patency. This study reviews the literature and describes the values and limitations of spreader grafts in rhinoplasty and the alternatives to classic spreader grafts
    corecore