48 research outputs found
CCI-779 (Temsirolimus) exhibits increased anti-tumor activity in low EGFR expressing HNSCC cell lines and is effective in cells with acquired resistance to cisplatin or cetuximab
Background: The mammalian target of rapamycin (mTOR) signaling pathway plays a pivotal role in numerous cellular processes involving growth, proliferation and survival. The purpose of this study was to investigate the anti-tumoral effect of the mTOR inhibitor (mTORi) CCI-779 in HNSCC cell lines and its potency in cisplatin- and cetuximab-resistant cells. Methods: A panel of 10 HNSCC cell lines with differences in TP53 mutational status and basal cisplatin sensitivity and two isogenic models of acquired resistance to cisplatin and cetuximab, respectively were studied. Cell survival after treatment with CCI-779, cisplatin and cetuximab alone or in combination was determined by MTT assays. Potential predictive biomarkers for tumor cell sensitivity to CCI-779 were evaluated. Results: We observed considerable heterogeneity in sensitivity of HNSCC cell lines to CCI-779 monotherapy. Sensitivity was observed in TP53 mutated as well as wild-type cell lines. Total and p-EGFR expression levels but not the basal activity of the mTOR and MAPK signaling pathways were correlated with sensitivity to CCI-779. Resistant cells with increased EGFR activation could be sensitized by the combination of CCI-779 with cetuximab. Interestingly, cell lines with acquired resistance to cisplatin displayed a higher sensitivity to CCI-779 whereas cetuximab-resistant cells were less sensitive to the drug, but could be sensitized to CCI-779 by EGFR blockade. Conclusions: Activity of CCI-779 in HNSCC cells harboring TP53 mutations and displaying a phenotype of cisplatin resistance suggests its clinical potential even in patients with dismal outcome after current standard treatment. Cetuximab/mTORi combinations might be useful for treatment of tumors with high expression of EGFR/p-EGFR and/or acquired cetuximab resistance. This combinatorial treatment modality needs further evaluation in future translational and clinical studies
Negative enrichment by immunomagnetic nanobeads for unbiased characterization of circulating tumor cells from peripheral blood of cancer patients
BACKGROUND: A limitation of positive selection strategies to enrich for circulating tumor cells (CTCs) is that there might be CTCs with insufficient expression of the surface target marker which may be missed by the procedure. We optimized a method for enrichment, subsequent detection and characterization of CTCs based on depletion of the leukocyte fraction. METHODS: The 2-step protocol was developed for processing 20 mL blood and based on red blood cell lysis followed by leukocyte depletion. The remaining material was stained with the epithelial markers EpCAM and cytokeratin (CK) 7/8 or for the melanoma marker HMW-MAA/MCSP. CTCs were detected by flow cytometry. CTCs enriched from blood of patients with carcinoma were defined as EpCAM+CK+CD45-. CTCs enriched from blood of patients with melanoma were defined as MCSP+CD45-. One-hundred-sixteen consecutive blood samples from 70 patients with metastatic carcinomas (n = 48) or metastatic melanoma (n = 22) were analyzed. RESULTS: CTCs were detected in 47 of 84 blood samples (56%) drawn from carcinoma patients, and in 17 of 32 samples (53%) from melanoma patients. CD45-EpCAM-CK+ was detected in pleural effusion specimens, as well as in peripheral blood samples of patients with NSCLC. EpCAM-CK+ cells have been successfully cultured and passaged longer than six months suggesting their neoplastic origin. This was confirmed by CGH. By defining CTCs in carcinoma patients as CD45-CK+ and/or EpCAM+, the detection rate increased to 73% (61/84). CONCLUSION: Enriching CTCs using CD45 depletion allowed for detection of epithelial cancer cells not displaying the classical phenotype. This potentially leads to a more accurate estimation of the number of CTCs. If detection of CTCs without a classical epithelial phenotype has clinical relevance need to be determined
Spheroid Culture of Head and Neck Cancer Cells Reveals an Important Role of EGFR Signalling in Anchorage Independent Survival
In solid tumours millions of cells are shed into the blood circulation each
day. Only a subset of these circulating tumour cells (CTCs) survive, many of
them presumable because of their potential to form multi-cellular clusters
also named spheroids. Tumour cells within these spheroids are protected from
anoikis, which allows them to metastasize to distant organs or re-seed at the
primary site. We used spheroid cultures of head and neck squamous cell
carcinoma (HNSCC) cell lines as a model for such CTC clusters for determining
the role of the epidermal growth factor receptor (EGFR) in cluster formation
ability and cell survival after detachment from the extra-cellular matrix. The
HNSCC cell lines FaDu, SCC-9 and UT-SCC-9 (UT-SCC-9P) as well as its cetuximab
(CTX)-resistant sub-clone (UT-SCC-9R) were forced to grow in an anchorage-
independent manner by coating culture dishes with the anti-adhesive polymer
poly-2-hydroxyethylmethacrylate (poly-HEMA). The extent of apoptosis,
clonogenic survival and EGFR signalling under such culture conditions was
evaluated. The potential of spheroid formation in suspension culture was found
to be positively correlated with the proliferation rate of HNSCC cell lines as
well as their basal EGFR expression levels. CTX and gefitinib blocked, whereas
the addition of EGFR ligands promoted anchorage-independent cell survival and
spheroid formation. Increased spheroid formation and growth were associated
with persistent activation of EGFR and its downstream signalling component
(MAPK/ERK). Importantly, HNSCC cells derived from spheroid cultures retained
their clonogenic potential in the absence of cell-matrix contact. Addition of
CTX under these conditions strongly inhibited colony formation in CTX-
sensitive cell lines but not their resistant subclones. Altogether, EGFR
activation was identified as crucial factor for anchorage-independent survival
of HNSCC cells. Targeting EGFR in CTC cluster formation might represent an
attractive anti-metastatic treatment approach in HNSCC
Applicability of liquid biopsies to represent the mutational profile of tumor tissue from different cancer entities
Genetic investigation of tumor heterogeneity and clonal evolution in solid cancers could be assisted by the analysis of liquid biopsies. However, tumors of various entities might release different quantities of circulating tumor cells (CTCs) and cell-free DNA (cfDNA) into the bloodstream, potentially limiting the diagnostic potential of liquid biopsy in distinct tumor histologies. Patients with advanced colorectal cancer (CRC), head and neck squamous cell carcinoma (HNSCC), and melanoma (MEL) were enrolled in the study, representing tumors with different metastatic patterns. Mutation profiles of cfDNA, CTCs, and tumor tissue were assessed by panel sequencing, targeting 327 cancer-related genes. In total, 30 tissue, 18 cfDNA, and 7 CTC samples from 18 patients were sequenced. Best concordance between the mutation profile of tissue and cfDNA was achieved in CRC and MEL, possibly due to the remarkable heterogeneity of HNSCC (63%, 55% and 11%, respectively). Concordance especially depended on the amount of cfDNA used for library preparation. While 21 of 27 (78%) tissue mutations were retrieved in high-input cfDNA samples (30-100 ng, N = 8), only 4 of 65 (6%) could be detected in low-input samples (<30 ng, N = 10). CTCs were detected in 13 of 18 patients (72%). However, downstream analysis was limited by poor DNA quality, allowing targeted sequencing of only seven CTC samples isolated from four patients. Only one CTC sample reflected the mutation profile of the respective tumor. Private mutations, which were detected in CTCs but not in tissue, suggested the presence of rare subclones. Our pilot study demonstrated superiority of cfDNA- compared to CTC-based mutation profiling. It was further shown that CTCs may serve as additional means to detect rare subclones possibly involved in treatment resistance. Both findings require validation in a larger patient cohort
68Ga-PSMA-PET/CT-based radiosurgery and stereotactic body radiotherapy for oligometastatic prostate cancer
Background:
Androgen deprivation therapy (ADT) remains the standard therapy for patients with oligometastatic prostate cancer (OMPC). Prostate-specific membrane antigen positron emission tomography/computed tomography (PSMA-PET/CT)-based stereotactic body radiotherapy (SBRT) is emerging as an alternative option to postpone starting ADT and its associated side effects including the development of drug resistance. The aim of this study was to determine progression free-survival (PFS) and treatment failure free-survival (TFFS) after PSMA-PET/CT-based SBRT in OMPC patients. The efficacy and safety of single fraction radiosurgery (SFRS) and ADT delay were investigated.
Methods:
Patients with ≤ 5 metastases from OMPC, with/without ADT treated with PSMA-PET/CT-based SBRT were retrospectively analyzed. PFS and TFFS were primary endpoints. Secondary endpoints were local control (LC), overall survival (OS) and ADT-free survival (ADTFS).
Results:
Fifty patients with a total of 75 metastases detected by PSMA-PET/CT were analyzed. At the time of SBRT, 70% of patients were castration-sensitive. Overall, 80% of metastases were treated with SFRS (median dose 20 Gy, range: 16-25). After median follow-up of 34 months (range: 5-70) median PFS and TFFS were 12 months (range: 2-63) and 14 months (range: 2-70), respectively. Thirty-two (64%) patients had repeat oligometastatic disease. Twenty-four (48%) patients with progression underwent second SBRT course. Two-year LC after SFRS was 96%. Grade 1 and 2 toxicity occurred in 3 (6%) and 1 (2%) patients, respectively. ADTFS and OS rates at 2-years were 60.5% and 100%, respectively. In multivariate analysis, TFFS significantly improved in patients with time to first metastasis (TTM) >36 months (p = 0.01) and PSA before SBRT ≤ 1 ng/ml (p = 0.03).
Conclusion:
For patients with OMPC, SBRT might be used as an alternative to ADT. This way, the start/escalation of palliative ADT and its side effects can be deferred. Metastases treated with PSMA-PET/CT-based SFRS reached excellent LC with minimal toxicity. Low PSA levels and longer TTM predict elongated TFFS
Radiosurgery and fractionated stereotactic body radiotherapy for patients with lung oligometastases
Background: Patients with oligometastatic disease can potentially be cured by using an ablative therapy for all active lesions. Stereotactic body radiotherapy (SBRT) is a non-invasive treatment option that lately proved to be as effective and safe as surgery in treating lung metastases (LM). However, it is not clear which patients benefit most and what are the most suitable fractionation regimens. The aim of this study was to analyze treatment outcomes after single fraction radiosurgery (SFRS) and fractionated SBRT (fSBRT) in patients with lung oligometastases and identify prognostic clinical features for better survival outcomes.
Methods: Fifty-two patients with 94 LM treated with SFRS or fSBRT between 2010 and 2016 were analyzed. The characteristics of primary tumor, LM, treatment, toxicity profiles and outcomes were assessed. Kaplan-Meier and Cox regression analyses were used for estimation of local control (LC), overall survival (OS) and progression-free survival.
Results: Ninety-four LM in 52 patients were treated using SFRS/fSBRT with a median of 2 lesions per patient (range: 1-5). The median planning target volume (PTV)-encompassing dose for SFRS was 24 Gy (range: 17-26) compared to 45 Gy (range: 20-60) in 2-12 fractions with fSBRT. The median follow-up time was 21 months (range: 3-68). LC rates at 1 and 2 years for SFSR vs. fSBRT were 89 and 83% vs. 75 and 59%, respectively (p = 0.026). LM treated with SFSR were significantly smaller (p = 0.001). The 1 and 2-year OS rates for all patients were 84 and 71%, respectively. In univariate analysis treatment with SFRS, an interval of ≥12 months between diagnosis of LM and treatment, non-colorectal cancer histology and BED 70% and time to first metastasis ≥12 months. There was no grade 3 acute or late toxicity.
Conclusions: Longer time to first metastasis, good KPS and N0 predicted better OS. Good LC and low toxicity rates were achieved after short SBRT schedules
PET measured hypoxia and MRI parameters in re-irradiated head and neck squamous cell carcinomas: findings of a prospective pilot study [version 2; peer review: 2 approved]
Background: Tumor hypoxia measured by dedicated tracers like [ 18F]fluoromisonidazole (FMISO) is a well-established prognostic factor in head and neck squamous cell carcinomas (HNSCC) treated with definitive chemoradiation (CRT). However, prevalence and characteristics of positron emission tomography (PET) measured hypoxia in patients with relapse after previous irradiation is missing. Here we report imaging findings of a prospective pilot study in HNSCC patients treated with re-irradiation.
Methods: In 8 patients with recurrent HNSCC, diagnosed at a median of 18 months after initial radiotherapy/CRT, [ 18F]fluorodeoxyglucose (FDG)-PET/CT (n=8) and FMISO-PET/MRI (n=7) or FMISO-PET/CT (n=1) were performed. Static FMISO-PET was performed after 180 min. MRI sequences in PET/MRI included diffusion-weighted imaging with apparent diffusion coefficient (ADC) values and contrast enhanced T1w imaging (StarVIBE). Lesions (primary tumor recurrence, 4; cervical lymph node, 1; both, 3) were delineated on FDG-PET and FMISO-PET data using a background-adapted threshold-based method. SUV max and SUV mean in FDG- and FMISO-PET were derived, as well as maximum tumor-to-muscle ratio (TMR max) and hypoxic volume with 1.6-fold muscle SUV mean (HV 1.6) in FMISO-PET. Intensity of lesional contrast enhancement was rated relative to contralateral normal tissue. Average ADC values were derived from a 2D region of interest in the tumor.
Results: In FMISO-PET, median TMR max was 1.7 (range: 1.1-1.8). Median HV 1.6 was 0.05 ml (range: 0-7.3 ml). Only in 2/8 patients, HV 1.6 was ≥1.0 ml. In FDG-PET, median SUV max was 9.3 (range: 5.0-20.1). On contrast enhanced imaging four lesions showed decreased and four lesions increased contrast enhancement compared to non-pathologic reference tissue. Median average ADC was 1,060 ×10 6 mm 2/s (range: 840-1,400 ×10 6 mm 2/s).
Conclusions: This pilot study implies that hypoxia detectable by FMISO-PET may not be as prevalent as expected among loco-regional recurrent, HPV negative HNSCC. ADC values were only mildly reduced, and contrast enhancement was variable. The results require confirmation in larger sample sizes
Prognostic Factors Predict Oncological Outcome in Older Patients With Head and Neck Cancer Undergoing Chemoradiation Treatment
Purpose: Older patients with head and neck cancer (HNC) represent a challenging group, as frailty and comorbidities need to be considered. This study aimed to evaluate the efficacy and side effects of curative and palliative (chemo) radiation ([C]RT) with regard to basic geriatric screening in older patients.
Methods: This study included HNC patients aged >= 70 years who were treated with curative or palliative (C)RT. Clinicopathological data including Charlson Comorbidity Index (CCI), Karnofsky performance status (KPS), and treatment data were analyzed as predictors of overall survival (OS).
Results: A total of 271 patients (median age, 74 years) were enrolled. The majority had UICC stage III/IV (90%) and underwent curative treatment (85.2%). A total of 144 (53.1%) patients received definitive and 87 (32.1%) had adjuvant (C)RT. Overall, 40 patients (14.8%) received palliative (C)RT. Median follow-up duration (curative setting) was 87 months, and the 2- and 5-year OS rates were 57.8 and 35.9%, respectively. Median OS was significantly different for age ≤75 vs. >75 years, CCI vs. ≥6, KPS ≥70 vs. <70%, Tx/T1/T2 vs. T3/T4, and adjuvant vs. definitive (C)RT, respectively. Age 70-75 years (p = 0.004), fewer comorbidities when CCI < 6 (p = 0.014), good KPS ≥70% (p = 0.001), and adjuvant (C)RT (p = 0.008) independently predicted longer survival. Palliative RT resulted in a median OS of 4 months.
Conclusion: Older age, lower KPS, higher CCI, and definitive (C)RT are indicators of worse survival in older patients with HNC treated curatively. Without a comprehensive geriatric assessment in patients aged >75 years, the KPS and CCI can be useful tools to account for "fitness, vulnerability or frailty" to help in treatment decision-making
Pilot investigation on the dose-dependent impact of irradiation on primary human alveolar osteoblasts in vitro
Radiotherapy of head and neck squamous cell carcinoma can lead to long-term complications like osteoradionecrosis, resulting in severe impairment of the jawbone. Current standard procedures require a 6-month wait after irradiation before dental reconstruction can begin. A comprehensive characterization of the irradiation-induced molecular and functional changes in bone cells could allow the development of novel strategies for an earlier successful dental reconstruction in patients treated by radiotherapy. The impact of ionizing radiation on the bone-forming alveolar osteoblasts remains however elusive, as previous studies have relied on animal-based models and fetal or animal-derived cell lines. This study presents the first in vitro data obtained from primary human alveolar osteoblasts. Primary human alveolar osteoblasts were isolated from healthy donors and expanded. After X-ray irradiation with 2, 6 and 10 Gy, cells were cultivated under osteogenic conditions and analyzed regarding their proliferation, mineralization, and expression of marker genes and proteins. Proliferation of osteoblasts decreased in a dose-dependent manner. While cells recovered from irradiation with 2 Gy, application of 6 and 10 Gy doses not only led to a permanent impairment of proliferation, but also resulted in altered cell morphology and a disturbed structure of the extracellular matrix as demonstrated by immunostaining of collagen I and fibronectin. Following irradiation with any of the examined doses, a decrease of marker gene expression levels was observed for most of the investigated genes, revealing interindividual differences. Primary human alveolar osteoblasts presented a considerably changed phenotype after irradiation, depending on the dose administered. Mechanisms for these findings need to be further investigated. This could facilitate improved patient care by re-evaluating current standard procedures and investigating faster and safer reconstruction concepts, thus improving quality of life and social integrity.TU Berlin, Open-Access-Mittel – 202
Distinct immune evasion in APOBEC‐enriched, HPV‐negative HNSCC
Immune checkpoint inhibition leads to response in some patients with head and neck squamous cell carcinoma (HNSCC). Robust biomarkers are lacking to date. We analyzed viral status, gene expression signatures, mutational load and mutational signatures in whole exome and RNA-sequencing data of the HNSCC TCGA dataset (n = 496) and a validation set (DKTK MASTER cohort, n = 10). Public single-cell gene expression data from 17 HPV-negative HNSCC were separately reanalyzed. APOBEC3-associated TCW motif mutations but not total single nucleotide variant burden were significantly associated with inflammation. This association was restricted to HPV-negative HNSCC samples. An APOBEC-enriched, HPV-negative subgroup was identified, that showed higher T-cell inflammation and immune checkpoint expression, as well as expression of APOBEC3 genes. Mutations in immune-evasion pathways were also enriched in these tumors. Analysis of single-cell sequencing data identified expression of APOBEC3B and 3C genes in malignant cells. We identified an APOBEC-enriched subgroup of HPV-negative HNSCC with a distinct immunogenic phenotype, potentially mediating response to immunotherapy