11 research outputs found

    Increasing but levelling out risk of revision due to infection after total hip arthroplasty: a study on 108,854 primary THAs in the Norwegian Arthroplasty Register from 2005 to 2019

    Get PDF
    Background and purpose — Focus on prevention, surveillance, and treatment of infection after total hip arthroplasty (THA) in the last decade has resulted in new knowledge and guidelines. Previous publications have suggested an increased incidence of surgical revisions due to infection after THA. We assessed whether there have been changes in the risk of revision due to deep infection after primary THAs reported to the Norwegian Arthroplasty Register (NAR) over the period 2005–2019. Patients and methods — Primary THAs reported to the NAR from January 1, 2005 to December 31, 2019 were included. Adjusted Cox regression analyses with the first revision due to deep infection after primary THA were performed. We investigated changes in the risk of revision as a function of time of primary THA. Time was stratified into 5-year periods. We studied the whole population of THAs, and the subgroups: all-cemented, all-uncemented, reverse hybrid (cemented cup), and hybrid THAs (cemented stem). In addition, we investigated factors that were associated with the risk of revision, and changes in the time span from primary THA to revision. Results — Of the 108,854 primary THAs that met the inclusion criteria, 1,365 (1.3%) were revised due to deep infection. The risk of revision due to infection, at any time after primary surgery, increased through the period studied. Compared with THAs implanted in 2005–2009, the relative risk of revision due to infection was 1.4 (95% CI 1.2–1.7) for 2010–2014, and 1.6 (1.1–1.9) for 2015–2019. We found an increased risk for all types of implant fixation. Compared to 2005–2009, for all THAs, the risk of revision due to infection 0–30 days postoperatively was 2.2 (1.8–2.8) for 2010–2014 and 2.3 (1.8–2.9) for 2015–2019, 31–90 days postoperatively 1.0 (0.7–1.6) for 2010–2014 and 1.6 (1.0–2.5) for 2015–2019, and finally 91 days–1 year postoperatively 1.1 (0.7–1.8) for 2010–2014 and 1.6 (1.0–2.6) for 2015–2019. From 1 to 5 years postoperatively, the risk of revision due to infection was similar to 2005–2009 for both the subsequent time periods Interpretation — The risk of revision due to deep infection after THA increased throughout the period 2005–2019, but appears to have levelled out after 2010. The increase was mainly due to an increased risk of early revisions, and may partly have been caused by a change of practice rather than a change in the incidence of infection.publishedVersio

    Infection after primary hip arthroplasty: A comparison of 3 Norwegian health registers

    Get PDF
    Background and purpose: The aim of the present study was to assess incidence of and risk factors for infection after hip arthroplasty in data from 3 national health registries. We investigated differences in risk patterns between surgical site infection (SSI) and revision due to infection after primary total hip arthroplasty (THA) and hemiarthroplasty (HA). Materials and methods: This observational study was based on prospective data from 2005–2009 on primary THAs and HAs from the Norwegian Arthroplasty Register (NAR), the Norwegian Hip Fracture Register (NHFR), and the Norwegian Surveillance System for Healthcare–Associated Infections (NOIS). The Norwegian Patient Register (NPR) was used for evaluation of case reporting. Cox regression analyses were performed with revision due to infection as endpoint for data from the NAR and the NHFR, and with SSI as the endpoint for data from the NOIS. Results: The 1–year incidence of SSI in the NOIS was 3.0% after THA (167/5,540) and 7.3% after HA (103/1,416). The 1–year incidence of revision due to infection was 0.7% for THAs in the NAR (182/24,512) and 1.5% for HAs in the NHFR (128/8,262). Risk factors for SSI after THA were advanced age, ASA class higher than 2, and short duration of surgery. For THA, the risk factors for revision due to infection were male sex, advanced age, ASA class higher than 1, emergency surgery, uncemented fixation, and a National Nosocomial Infection Surveillance (NNIS) risk index of 2 or more. For HAs inserted after fracture, age less than 60 and short duration of surgery were risk factors of revision due to infection. Interpretation: The incidences of SSI and revision due to infection after primary hip replacements in Norway are similar to those in other countries. There may be differences in risk pattern between SSI and revision due to infection after arthroplasty. The risk patterns for revision due to infection appear to be different for HA and THA

    Are conventional microbiological diagnostics sufficiently expedient in the era of rapid diagnostics? Evaluation of conventional microbiological diagnostics of orthopedic implant-associated infections (OIAI)

    No full text
    Background and purpose — In a time when rapid diagnostics are increasingly sought, conventional procedures for detection of microbes causing orthopedic implant-associated infections (OIAI) seem extensive and time-consuming, but how extensive are they? We assessed time to (a) pathogen identification, (b) antibiotic susceptibility patterns, and (c) targeted antibiotic treatment using conventional microbiological diagnostics of OIAI in a consecutive series of patients. Patients and methods — Consecutive patients aged ≥18 years undergoing first revision surgery for acute OIAI, including prosthetic joints, fracture, and osteotomy implants, in 2017–2018 at Akershus University Hospital (Ahus), Norway were included. Information regarding microbiological diagnostics and clinical data was collected retrospectively from the hospital’s diagnostic and clinical databases. Results — 123 patients fulfilled the inclusion criteria. Median time to pathogen identification was 2.5 days and to antibiotic treatment recommendations was 3.5 days. The most common pathogens were S. aureus (52%) and S. epidermidis (15%). Cultures were inconclusive in 11% of the patients. Of the 109 patients with culture-positive results, antibiotic treatment was changed in 66 (61%) patients within a median of 4 days (0–24) after the recommendation was given. Interpretation — Conventional microbiological diagnostics of OIAI is time-consuming, taking days of culturing. Same-day diagnostics would vastly improve treatment efficacy, but is dependent on rapid implementation by clinicians of the treatment recommendations given by the microbiologist

    Rapid Diagnostics of Orthopaedic-Implant-Associated Infections Using Nanopore Shotgun Metagenomic Sequencing on Tissue Biopsies

    No full text
    Conventional culture-based diagnostics of orthopaedic-implant-associated infections (OIAIs) are arduous. Hence, the aim of this study was to evaluate a culture-independent, rapid nanopore-based diagnostic protocol with regard to (a) pathogen identification, (b) time to pathogen identification, and (c) identification of antimicrobial resistance (AMR). This prospective proof-of-concept study included soft tissue biopsies from 32 patients with OIAIs undergoing first revision surgery at Akershus University Hospital, Norway. The biopsies were divided into two segments. Nanopore shotgun metagenomic sequencing and pathogen and antimicrobial resistance gene identification using the EPI2ME analysis platform (Oxford Nanopore Technologies) were performed on one segment. Conventional culture-based diagnostics were performed on the other. Microbial identification matched in 23/32 OIAI patients (72%). Sequencing detected additional microbes in 9/32 patients. Pathogens detected by culturing were identified by sequencing within a median of 1 h of sequencing start [range 1–18 h]. Phenotypic AMR was explained by the detection of resistance genes in 11/23 patients (48%). Diagnostics of OIAIs using shotgun metagenomics sequencing are possible within 24 h from biopsy using nanopore technology. Sequencing outperformed culturing with respect to speed and pathogen detection where pathogens were at sufficient concentration, whereas culture-based methods had an advantage at lower pathogen concentrations. Sequencing-based AMR detection may not yet be a suitable replacement for culture-based antibiotic susceptibility testing

    Molecular characteristics of Staphylococcus aureus associated prosthetic joint infections after hip fractures treated with hemiarthroplasty: a retrospective genome-wide association study

    No full text
    Abstract A retrospective study of Staphylococcus aureus isolates from orthopaedic patients treated between 2000 and 2017 at Akershus University Hospital, Norway was performed using a genome-wide association approach. The aim was to characterize and investigate molecular characteristics unique to S. aureus isolates from HHA associated prosthetic joint infections and potentially explain the HHA patients’ elevated 1-year mortality compared to a non-HHA group. The comparison group consisted of patients with non-HHA lower-extremity implant-related S. aureus infections. S. aureus isolates from diagnostic patient samples were whole-genome sequenced. Univariate and multivariate analyses were performed to detect group-associated genetic signatures. A total of 62 HHA patients and 73 non-HHA patients were included. Median age (81 years vs. 74 years; p  < 0.001) and 1-year mortality (44% vs. 15%, p  < 0.001) were higher in the HHA group. A total of 20 clonal clusters (CCs) were identified; 75% of the isolates consisted of CC45, CC30, CC5, CC15, and CC1. Analyses of core and accessory genome content, including virulence, resistance genes, and k-mer analysis revealed few group-associated variants, none of which could explain the elevated 1-year mortality in HHA patients. Our findings support the premise that all S. aureus can cause invasive infections given the opportunity

    Virus transmission during orthopedic surgery on patients with COVID-19 – a brief narrative review

    Get PDF
    Background and purpose — COVID-19 is among the most impactful pandemics that the society has experienced. Orthopedic surgery involves procedures generating droplets and aerosols and there is concern amongst surgeons that otherwise rational precautionary principles are being set aside due to lack of scientific evidence and a shortage of personal protective equipment (PPE). This narrative review attempts to translate relevant knowledge into practical recommendations for healthcare workers involved in orthopedic surgery on patients with known or suspected COVID-19. Patients and methods — We unsystematically searched in PubMed, reference lists, and the WHO’s web page for relevant publications concerning problems associated with the PPE used in perioperative practice when a patient is COVID-19 positive or suspected to be. A specific search for literature regarding COVID-19 was extended to include publications from the SARS epidemic in 2002/3. Results — Transmission of infectious viruses from patient to surgeon during surgery is possible, but does not appear to be a considerable problem in clinical practice. Seal-leakage is a problem with surgical masks. Due to the lack of studies and reports, the possibility of transmission of SARS-CoV-2 from patient to surgeon during droplet- and aerosol-generating procedures is unknown. Interpretation — Surgical masks should be used only in combination with a widely covering visor and when a respirator (N95, FFP2, P3) is not made available. Furthermore, basic measures to reduce shedding of droplets and aerosols during surgery and correct and consistent use of personal protective equipment is important

    Virus transmission during orthopedic surgery on patients with COVID-19 – a brief narrative review

    No full text
    Background and purpose — COVID-19 is among the most impactful pandemics that the society has experienced. Orthopedic surgery involves procedures generating droplets and aerosols and there is concern amongst surgeons that otherwise rational precautionary principles are being set aside due to lack of scientific evidence and a shortage of personal protective equipment (PPE). This narrative review attempts to translate relevant knowledge into practical recommendations for healthcare workers involved in orthopedic surgery on patients with known or suspected COVID-19. Patients and methods — We unsystematically searched in PubMed, reference lists, and the WHO’s web page for relevant publications concerning problems associated with the PPE used in perioperative practice when a patient is COVID-19 positive or suspected to be. A specific search for literature regarding COVID-19 was extended to include publications from the SARS epidemic in 2002/3. Results — Transmission of infectious viruses from patient to surgeon during surgery is possible, but does not appear to be a considerable problem in clinical practice. Seal-leakage is a problem with surgical masks. Due to the lack of studies and reports, the possibility of transmission of SARS-CoV-2 from patient to surgeon during droplet- and aerosol-generating procedures is unknown. Interpretation — Surgical masks should be used only in combination with a widely covering visor and when a respirator (N95, FFP2, P3) is not made available. Furthermore, basic measures to reduce shedding of droplets and aerosols during surgery and correct and consistent use of personal protective equipment is important

    Virus transmission during orthopedic surgery on patients with COVID-19 – a brief narrative review

    No full text
    Background and purpose — COVID-19 is among the most impactful pandemics that the society has experienced. Orthopedic surgery involves procedures generating droplets and aerosols and there is concern amongst surgeons that otherwise rational precautionary principles are being set aside due to lack of scientific evidence and a shortage of personal protective equipment (PPE). This narrative review attempts to translate relevant knowledge into practical recommendations for healthcare workers involved in orthopedic surgery on patients with known or suspected COVID-19. Patients and methods — We unsystematically searched in PubMed, reference lists, and the WHO’s web page for relevant publications concerning problems associated with the PPE used in perioperative practice when a patient is COVID-19 positive or suspected to be. A specific search for literature regarding COVID-19 was extended to include publications from the SARS epidemic in 2002/3. Results — Transmission of infectious viruses from patient to surgeon during surgery is possible, but does not appear to be a considerable problem in clinical practice. Seal-leakage is a problem with surgical masks. Due to the lack of studies and reports, the possibility of transmission of SARS-CoV-2 from patient to surgeon during droplet- and aerosol-generating procedures is unknown. Interpretation — Surgical masks should be used only in combination with a widely covering visor and when a respirator (N95, FFP2, P3) is not made available. Furthermore, basic measures to reduce shedding of droplets and aerosols during surgery and correct and consistent use of personal protective equipment is important

    Increasing but levelling out risk of revision due to infection after total hip arthroplasty: a study on 108,854 primary THAs in the Norwegian Arthroplasty Register from 2005 to 2019

    No full text
    Background and purpose — Focus on prevention, surveillance, and treatment of infection after total hip arthroplasty (THA) in the last decade has resulted in new knowledge and guidelines. Previous publications have suggested an increased incidence of surgical revisions due to infection after THA. We assessed whether there have been changes in the risk of revision due to deep infection after primary THAs reported to the Norwegian Arthroplasty Register (NAR) over the period 2005–2019. Patients and methods — Primary THAs reported to the NAR from January 1, 2005 to December 31, 2019 were included. Adjusted Cox regression analyses with the first revision due to deep infection after primary THA were performed. We investigated changes in the risk of revision as a function of time of primary THA. Time was stratified into 5-year periods. We studied the whole population of THAs, and the subgroups: all-cemented, all-uncemented, reverse hybrid (cemented cup), and hybrid THAs (cemented stem). In addition, we investigated factors that were associated with the risk of revision, and changes in the time span from primary THA to revision. Results — Of the 108,854 primary THAs that met the inclusion criteria, 1,365 (1.3%) were revised due to deep infection. The risk of revision due to infection, at any time after primary surgery, increased through the period studied. Compared with THAs implanted in 2005–2009, the relative risk of revision due to infection was 1.4 (95% CI 1.2–1.7) for 2010–2014, and 1.6 (1.1–1.9) for 2015–2019. We found an increased risk for all types of implant fixation. Compared to 2005–2009, for all THAs, the risk of revision due to infection 0–30 days postoperatively was 2.2 (1.8–2.8) for 2010–2014 and 2.3 (1.8–2.9) for 2015–2019, 31–90 days postoperatively 1.0 (0.7–1.6) for 2010–2014 and 1.6 (1.0–2.5) for 2015–2019, and finally 91 days–1 year postoperatively 1.1 (0.7–1.8) for 2010–2014 and 1.6 (1.0–2.6) for 2015–2019. From 1 to 5 years postoperatively, the risk of revision due to infection was similar to 2005–2009 for both the subsequent time periods Interpretation — The risk of revision due to deep infection after THA increased throughout the period 2005–2019, but appears to have levelled out after 2010. The increase was mainly due to an increased risk of early revisions, and may partly have been caused by a change of practice rather than a change in the incidence of infection
    corecore