74 research outputs found

    PET – Assessment of Oncologic Treatment Response

    Get PDF

    Stereotactic image-guided lung radiotherapy (SBRT) for clinical early-stage NSCLC: a long-term report from a multi-institutional database of patients treated with or without a pathologic diagnosis

    Full text link
    PURPOSE: Early stage lung cancer is treated with stereotactic body radiation therapy (SBRT) in patients who are unable or unwilling to undergo surgical resection. Some patients' comorbidities are so severe that they are unable to even undergo a biopsy. A clinical diagnosis without biopsy before SBRT has been used, but there are limited data on its efficacy. METHODS AND MATERIALS: Data on patients treated with SBRT for non-small cell lung cancer, with and without tissue confirmation, were collected from multiple institutions across Europe, Canada, and the United States. Patients with a minimum of 2 years of comprehensive follow up were selected for analysis. Treatment and patient characteristics were compared. Overall survival (OS), disease-free survival (DFS), cause-specific survival (CSS), and rates of local recurrence (LR), regional recurrence (RR), and distant metastasis (DM) were calculated and analyzed. RESULTS: A total of 701 patients were identified, of which 67% had tissue confirmation of their tumors. The 3- and 5-year outcomes for OS, CSS, and DFS were 83.8%, 93.1%, 69%, and 60.6%, 86.7%, 45.5%, respectively. The rates for LR, RR, and DM at 3 and 5 years were 6.4%, 9.3%, 14.3%, and 10.5%, 14.3%, 19.7%, respectively. There were no statistically significant differences in survival outcomes or recurrences between the biopsy and no-biopsy cohorts. CONCLUSIONS: SBRT for clinically diagnosed lung cancers is efficacious in appropriately selected patients, with similar outcomes as those with a pathologic diagnosis. Thorough clinical and radiographic evaluations in a multidisciplinary setting are critical to the management of these patients

    Correlating metabolic and anatomic responses of primary lung cancers to radiotherapy by combined F-18 FDG PET-CT imaging

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To correlate the metabolic changes with size changes for tumor response by concomitant PET-CT evaluation of lung cancers after radiotherapy.</p> <p>Methods</p> <p>36 patients were studied pre- and post-radiotherapy with<sup>18</sup>FDG PET-CT scans at a median interval of 71 days. All of the patients were followed clinically and radiographically after a mean period of 342 days for assessment of local control or failure rates. Change in size (sum of maximum orthogonal diameters) was correlated with that of maximum standard uptake value (SUV) of the primary lung cancer before and after conventional radiotherapy.</p> <p>Results</p> <p>There was a significant reduction in both SUV and size of the primary cancer after radiotherapy (p < 0.00005). Among the 20 surviving patients, the sensitivity, specificity, and accuracy using PET (SUV) were 94%, 50%, 90% respectively and the corresponding values using and CT (size criteria) were 67%, 50%, and 65% respectively. The metabolic change (SUV) was highly correlated with the change in size by a quadratic function. In addition, the mean percentage metabolic change was significantly larger than that of size change (62.3 ± 32.7% vs 47.1 ± 26.1% respectively, p = 0.03)</p> <p>Conclusion</p> <p>Correlating and incorporating metabolic change by PET into size change by concomitant CT is more sensitive in assessing therapeutic response than CT alone.</p

    A matched-pair analysis of stereotactic body radiotherapy (SBRT) for oligometastatic lung tumors from colorectal cancer versus early stage non-small cell lung cancer

    No full text
    Abstract Background The use of stereotactic body radiotherapy (SBRT) for early-stage primary non-small cell lung cancer (NSCLC) reported excellent local control rates. But the optimal SBRT dose for oligometastatic lung tumors (OLTs) from colorectal cancer (CRC) has not yet been determined. This study aimed to evaluate whether SBRT to a dose of 48–60 Gy in 4–5 fractions could result in similar local outcomes for OLTs from CRC as compared to early-stage NSCLC, and to examine potential dose-response relationships for OLTs from CRC. Methods OLTs from CRC and primary NSCLCs treated with SBRT to 48–60 Gy in 4–5 fractions at a single institution were evaluated, and a matched-pair analysis was performed. Local recurrence-free survival (LRFS) was estimated by the Kaplan-Meier method. Univariate Cox regression was performed to identify significant predictors. Results There were 72 lung lesions in 61 patients (24 OLTs from CRC in 15 patients and 48 NSCLCs in 46 patients) were analyzed with a median follow-up of 30 months. LRFS for OLTs from CRC was significantly worse than that of NSCLC when treated with 48–60 Gy/4–5 fx (p = 0.006). The 1, 3 and 5-year LRFS of OLTs from CRC vs NSCLC were 80.6% vs. 100%, 68.6% vs. 97.2%, and 68.6% vs. 81.0%, respectively. On univariate analysis, OLTs from CRC treated with higher dose (BED10 = 132 Gy) exhibited significantly better local recurrence-free survival than those treated to lower doses (BED10 ≤ 105.6 Gy) (p = 0.0022). The 1 and 3-year LRFS rates for OLTs treated to a higher dose (BED10 = 132 Gy) were 88.9% and 81.5%, vs 33.3%, and not achieved for lower doses (BED10 ≤ 105.6 Gy). Conclusion The LRFS of OLTs from CRC after SBRT of 48–60 Gy/4–5 fx was significantly worse than that of primary NSCLC. Lower dose SBRT appeared to have inferior control for OLTs of CRC in this cohort. Further studies with larger sample sizes are needed

    Safety and efficacy of stereotactic body radiotherapy as primary treatment for vertebral metastases: a multi-institutional analysis

    Get PDF
    Purpose To evaluate patient selection criteria, methodology, safety and clinical outcomes of stereotactic body radiotherapy (SBRT) for treatment of vertebral metastases. Materials and methods Eight centers from the United States (n = 5), Canada (n = 2) and Germany (n = 1) participated in the retrospective study and analyzed 301 patients with 387 vertebral metastases. No patient had been exposed to prior radiation at the treatment site. All patients were treated with linac-based SBRT using cone-beam CT image-guidance and online correction of set-up errors in six degrees of freedom. Results 387 spinal metastases were treated and the median follow-up was 11.8 months. The median number of consecutive vertebrae treated in a single volume was one (range, 1-6), and the median total dose was 24 Gy (range 8-60 Gy) in 3 fractions (range 1-20). The median EQD210 was 38 Gy (range 12-81 Gy). Median overall survival (OS) was 19.5 months and local tumor control (LC) at two years was 83.9%. On multivariate analysis for OS, male sex (p 1 vertebra treated with SBRT (p = 0.04; HR = 0.62) were correlated with worse outcomes. For LC, an interval between primary diagnosis of cancer and SBRT of ≤30 months (p = 0.01; HR = 0.27) and histology of primary disease (NSCLC, renal cell cancer, melanoma, other) (p = 0.01; HR = 0.21) were correlated with worse LC. Vertebral compression fractures progressed and developed de novo in 4.1% and 3.6%, respectively. Other adverse events were rare and no radiation induced myelopathy reported. Conclusions This multi-institutional cohort study reports high rates of efficacy with spine SBRT. At this time the optimal fractionation within high dose practice is unknown
    • …
    corecore