104 research outputs found

    The preparation route and final form of V-MXenes override the effect of the O/F ratio on their magnetic properties

    Get PDF
    This work was supported by OP VVV “Excellent Research Teams” project no. CZ.02.1.01/0.0/0.0/15_003/0000417 – CUCAM. P. E. would like to also acknowledge the Czech Science Foundation for the ExPro project (19-27551X). Computational resources and low-temperature infrastructure were supplied by the projects “e-Infrastruktura CZ” (e-INFRA CZ LM2018140) and MGML (LM2023065) supported by the Ministry of Education, Youth and Sports of the Czech Republic.Transition metal carbides and nitrides (MXenes) show a high potential for electrochemical energy storage in batteries and supercapacitors and for electrocatalysis. Their excellent electronic and magnetic characteristics have been highlighted in several theoretical studies. However, experimental research on MXenes is yet to confirm their predicted properties as candidates for controllable magnetic 2D materials. Here, we report our theoretical and experimental study of V2CTx MXenes (T = O, OH, F), providing key insights into their magnetism. Based on our density functional theory (DFT) analysis, we predicted ferromagnetic (FM) and antiferromagnetic (AFM) states of V2CTx, which are determined by the O/F ratio of surface functional groups. Accordingly, we prepared V2CTx MXenes in the form of multilayered powders and thin films with different O/F ratios. No experimental evidence of FM or AFM properties was found in any material. Nevertheless, powders and films with almost identical chemical compositions (in terms of O/F ratio) displayed different magnetic properties, whereas films with disparate chemical compositions revealed a similar magnetic character. Therefore, the preparation route and form of the final V2CTx material override the effect of the O/F ratio, which is often overestimated in theoretical studies. Moreover, these findings underscore the importance of preparing MXene materials to experimentally confirm their theoretically predicted properties.Peer reviewe

    The effect of pressure on the post-synthetic modification of a nanoporous metal-organic framework

    Get PDF
    This work is supported by funding from the EPSRC UK and the Leverhulme TrustHere we report four post-synthetic modifications, including the first ever example of a high pressure-induced post-synthetic modification, of a porous copper-based metal-organic framework. Ligand exchange with a water ligand at the axial metal site occurs with methanol, acetonitrile, methylamine and ethylamine within a single-crystal and without the need to expose a free metal site prior to modification, resulting in significant changes in the pore size, shape and functionality. Pressure experiments carried out using isopropylalcohol and acetaldehyde, however, results in no ligand exchange. By using these solvents as hydrostatic media for high-pressure single-crystal X-ray diffraction experiments, we have investigated the effect of ligand exchange on the stability and compressibility of the framework and demonstrate that post-synthetic ligand exchange is very sensitive to both the molecular size and functionality of the exchanged ligand. We also demonstrate the ability to force hydrophilic molecules into hydrophobic pores using high pressures which results in a pressure-induced chemical decomposition of the Cu-framework.Publisher PDFPeer reviewe

    Exposure to mobile telecommunication networks assessed using personal dosimetry and well-being in children and adolescents: the German MobilEe-study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite the increase of mobile phone use in the last decade and the growing concern whether mobile telecommunication networks adversely affect health and well-being, only few studies have been published that focussed on children and adolescents. Especially children and adolescents are important in the discussion of adverse health effects because of their possibly higher vulnerability to radio frequency electromagnetic fields.</p> <p>Methods</p> <p>We investigated a possible association between exposure to mobile telecommunication networks and well-being in children and adolescents using personal dosimetry. A population-based sample of 1.498 children and 1.524 adolescents was assembled for the study (response 52%). Participants were randomly selected from the population registries of four Bavarian (South of Germany) cities and towns with different population sizes. During a Computer Assisted Personal Interview data on participants' well-being, socio-demographic characteristics and potential confounder were collected. Acute symptoms were assessed three times during the study day (morning, noon, evening).</p> <p>Using a dosimeter (ESM-140 Maschek Electronics), we obtained an exposure profile over 24 hours for three mobile phone frequency ranges (measurement interval 1 second, limit of determination 0.05 V/m) for each of the participants. Exposure levels over waking hours were summed up and expressed as mean percentage of the ICNIRP (International Commission on Non-Ionizing Radiation Protection) reference level.</p> <p>Results</p> <p>In comparison to non-participants, parents and adolescents with a higher level of education who possessed a mobile phone and were interested in the topic of possible adverse health effects caused by mobile telecommunication network frequencies were more willing to participate in the study. The median exposure to radio frequency electromagnetic fields of children and adolescents was 0.18% and 0.19% of the ICNIRP reference level respectively.</p> <p>Conclusion</p> <p>In comparison to previous studies this is one of the first to assess the individual level of exposure to mobile telecommunication networks using personal dosimetry, enabling objective assessment of exposure from all sources and longer measurement periods. In total, personal dosimetry was proofed to be a well accepted tool to study exposure to mobile phone frequencies in epidemiologic studies including health effects on children and adolescents.</p

    Exposure to Radiofrequency Electromagnetic Fields and Sleep Quality: A Prospective Cohort Study

    Get PDF
    BACKGROUND: There is persistent public concern about sleep disturbances due to radiofrequency electromagnetic field (RF-EMF) exposure. The aim of this prospective cohort study was to investigate whether sleep quality is affected by mobile phone use or by other RF-EMF sources in the everyday environment. METHODS: We conducted a prospective cohort study with 955 study participants aged between 30 and 60 years. Sleep quality and daytime sleepiness was assessed by means of standardized questionnaires in May 2008 (baseline) and May 2009 (follow-up). We also asked about mobile and cordless phone use and asked study participants for consent to obtain their mobile phone connection data from the mobile phone operators. Exposure to environmental RF-EMF was computed for each study participant using a previously developed and validated prediction model. In a nested sample of 119 study participants, RF-EMF exposure was measured in the bedroom and data on sleep behavior was collected by means of actigraphy during two weeks. Data were analyzed using multivariable regression models adjusted for relevant confounders. RESULTS: In the longitudinal analyses neither operator-recorded nor self-reported mobile phone use was associated with sleep disturbances or daytime sleepiness. Also, exposure to environmental RF-EMF did not affect self-reported sleep quality. The results from the longitudinal analyses were confirmed in the nested sleep study with objectively recorded exposure and measured sleep behavior data. CONCLUSIONS: We did not find evidence for adverse effects on sleep quality from RF-EMF exposure in our everyday environmen
    corecore