253 research outputs found

    Interactions of AChE with Aβ Aggregates in Alzheimer’s Brain: Therapeutic Relevance of IDN 5706

    Get PDF
    Acetylcholinesterase (AChE; EC 3.1.1.7) plays a crucial role in the rapid hydrolysis of the neurotransmitter acetylcholine, in the central and peripheral nervous system and might also participate in non-cholinergic mechanism related to neurodegenerative diseases. Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by a progressive deterioration of cognitive abilities, amyloid-β (Aβ) peptide accumulation and synaptic alterations. We have previously shown that AChE is able to accelerate the Aβ peptide assembly into Alzheimer-type aggregates increasing its neurotoxicity. Furthermore, AChE activity is altered in brain and blood of Alzheimer’s patients. The enzyme associated to amyloid plaques changes its enzymatic and pharmacological properties, as well as, increases its resistant to low pH, inhibitors and excess of substrate. Here, we reviewed the effects of IDN 5706, a hyperforin derivative that has potential preventive effects on the development of AD. Our results show that treatment with IDN 5706 for 10 weeks increases brain AChE activity in 7-month-old double transgenic mice (APPSWE–PS1) and decreases the content of AChE associated with different types of amyloid plaques in this Alzheimer’s model. We concluded that early treatment with IDN 5706 decreases AChE–Aβ interaction and this effect might be of therapeutic interest in the treatment of AD

    Comprehensive Overview of Alzheimer’s Disease Neurodegeneration, from Amyloid-β to Neuroinflammatory Modulation

    Get PDF
    Alzheimer’s disease (AD) constitutes a major health threat to elder people. Despite the great advances achieved regarding our knowledge of the disease, we are far to successfully treat this pathology. Molecular alterations, immune/inflammatory response, and cell death are some of the processes involved during the pathology. Moreover, AD affects the whole brain. In this regard, we must not only consider the health status of neurons, of course, but also pay attention to the status of the glial cells and additional surrounding structures, such as the blood-brain barrier (BBB). Several groups have demonstrated how the molecular alterations occurring during AD alter neurons, glial, and endothelial cells. This situation has become so relevant that different groups are currently working to unveil the blank spaces in our understanding about the co-involvement of these elements in AD. Based in our experience, we believe that this kind of approach will lead to the design and development of more comprehensive therapeutical interventions. The present chapter summarizes the relevant aspects of state of the art regarding AD, from its molecular genesis to the recent advances in neuroinflammatory modulation, including nuclear receptors (NR), such as peroxisome proliferator-activated receptors (PPARs), and the Wnt pathway involved in the AD neurodegeneration

    The role of Wnt signaling in neuronal dysfunction in Alzheimer's Disease

    Get PDF
    Recent evidence supports a neuroprotective role for Wnt signaling in neurodegenerative disorders such as Alzheimer's Disease (AD). In fact, a relationship between amyloid-β-peptide (Aβ)-induced neurotoxicity and a decrease in the cytoplasmic levels of β-catenin has been observed. Apparently Aβ binds to the extracellular cysteine-rich domain of the Frizzled receptor (Fz) inhibiting Wnt/β-catenin signaling. Cross-talk with other signaling cascades that regulate Wnt/β-catenin signaling, including the activation of M1 muscarinic receptor and PKC, the use of Ibuprofen-ChE bi-functional compounds, PPAR α, γ agonists, nicotine and some antioxidants, results in neuroprotection against Aβ. These studies indicate that a sustained loss of Wnt signaling function may be involved in the Aβ-dependent neurodegeneration observed in Alzheimer's brain. In conclusion the activation of the Wnt signaling pathway could be proposed as a therapeutic target for the treatment of AD

    Heparin solubilizes asymmetric acetylcholinesterase from rat neuromuscular junction

    Get PDF
    AbstractWe are interested in the factors involved in the anchorage of acetylcholinesterase (AChE) to the synaptic basal lamina. Here, we report studies showing that heparin, a sulfated glycosaminoglycan, specifically solubilized AChE from endplate regions of rat diaphragm muscle. Of the several molecular forms of AChE present in that region, heparin only released the asymmetric A12 and A8 forms of the enzyme. Our results strongly support the involvement of heparin-like macromolecules in the in vivo immobilization of the collagen-tailed forms of AChE to the basal lamina of the neuromuscular junction

    WNT signaling in neuronal maturation and synaptogenesis

    Get PDF
    The Wnt signaling pathway plays a role in the development of the central nervous system and growing evidence indicates that Wnts also regulates the structure and function of the adult nervous system. Wnt components are key regulators of a variety of developmental processes, including embryonic patterning, cell specification, and cell polarity. In the nervous system, Wnt signaling also regulates the formation and function of neuronal circuits by controlling neuronal differentiation, axon outgrowth and guidance, dendrite development, synaptic function, and neuronal plasticity. Wnt factors can signal through three very well characterized cascades: canonical or β-catenin pathway, planar cell polarity pathway and calcium pathway that control different processes. However, divergent downstream cascades have been identified to control neuronal morphogenesis. In the nervous system, the expression of Wnt proteins is a highly controlled process. In addition, deregulation of Wnt signaling has been associated with neurodegenerative diseases. Here, we will review different aspects of neuronal and dendrite maturation, including spinogenesis and synaptogenesis. Finally, the role of Wnt pathway components on Alzheimer’s disease will be revised

    Wnt Signaling Upregulates Teneurin-3 Expression via Canonical and Non-canonical Wnt Pathway Crosstalk

    Get PDF
    Teneurins (Tens) are a highly conserved family of proteins necessary for cell-cell adhesion. Tens can be cleaved, and some of their proteolytic products, such as the teneurin c-terminal associated-peptide (TCAP) and the intracellular domain (ICD), have been demonstrated to be biologically active. Although Tens are considered critical for central nervous system development, they have also been demonstrated to play important roles in adult tissues, suggesting a potential link between their deregulation and various pathological processes, including neurodegeneration and cancer. However, knowledge regarding how Ten expression is modulated is almost absent. Relevantly, the functions of Tens resemble several of the effects of canonical and non-canonical Wnt pathway activation, including the effects of the Wnt pathways on neuronal development and function as well as their pivotal roles during carcinogenesis. Accordingly, in this initial study, we decided to evaluate whether Wnt signaling can modulate the expression of Tens. Remarkably, in the present work, we used a specific inhibitor of porcupine, the key enzyme for Wnt ligand secretion, to not only demonstrate the involvement of Wnt signaling in regulating Ten-3 expression for the first time but also reveal that Wnt3a, a canonical Wnt ligand, increases the expression of Ten-3 through a mechanism dependent on the secretion and activity of the non-canonical ligand Wnt5a. Although our work raises several new questions, our findings seem to demonstrate the upregulation of Ten-3 by Wnt signaling and also suggest that Ten-3 modulation is possible because of crosstalk between the canonical and non-canonical Wnt pathways

    Mitochondrial unfolded protein response (UPRmt): what we know thus far

    Get PDF
    Mitochondria are key organelles for the optimal function of the cell. Among their many functions, they maintain protein homeostasis through their own proteostatic machinery, which involves proteases and chaperones that regulate protein import and folding inside mitochondria. In the early 2000s, the mitochondrial unfolded protein response (UPRmt) was first described in mammalian cells. This stress response is activated by the accumulation of unfolded/misfolded proteins within the mitochondrial matrix, which results in the transmission of a signal to the nucleus to increase the expression of proteases and chaperones to address the abnormal mitochondrial protein load. After its discovery, this retrograde signaling pathway has also been described in other organisms of different complexities, suggesting that it is a conserved stress response. Although there are some specific differences among organisms, the mechanism of this stress response is mostly similar and involves the transmission of a signal from mitochondria to the nucleus that induces chromatin remodeling to allow the binding of specific transcription factors to the promoters of chaperones and proteases. In the last decade, proteins and signaling pathways that could be involved in the regulation of the UPRmt, including the Wnt signaling pathway, have been described. This minireview aims to summarize what is known about the mechanism of the UPRmt and its regulation, specifically in mammals and C. elegans

    Toll-Like Receptors (TLRs) in Neurodegeneration: Integrative Approach to TLR Cascades in Alzheimer’s and Parkinson’s Diseases

    Get PDF
    Sterile inflammatory response constitutes a main event in several neurodegenerative disorders. Alzheimer’s disease (AD) and Parkinson’s disease (PD), the leading degenerative pathologies of the central nervous system worldwide, exhibit a strong inflammatory component. Microglial and astrocytic reactivity, increased levels of inflammatory mediators, neuronal damage, and death are part of the pathological scenario leading to the progressive failure of the brain neuronal network. In this regard, the link between the toll-like receptors (TLRs)-mediated inflammatory cascade and the molecular hallmarks of AD and PD have been demonstrated elsewhere. Moreover, the long-lasting exposure to the inflammatory environment is considered one of the key elements leading to the establishment and progression of these pathologies. Accordingly, the modulation of the inflammatory response has emerged as a main target of new therapeutic approaches to fight these diseases. In this regard, and based on our previous works on this subject, we describe the pathological profile of both pathologies but in the inflammatory context. Thus, in the present chapter, we will introduce the main aspects of both diseases and how they interplay with the TLR-mediated response. We believe that this chapter should provide a concise overview of the roles of TLRs in the inflammatory cascades triggered during AD and PD pathophysiology
    corecore