19 research outputs found
Plant Explants Grown on Medium Supplemented with Fe 3
Development of nanotechnology leads to the increasing release of nanoparticles in the environment that results in accumulation of different NPs in living organisms including plants. This can lead to serious changes in plant cultures which leads to genotoxicity. The aims of the present study were to detect if iron oxide NPs pass through the flax cell wall, to compare callus morphology, and to estimate the genotoxicity in Linum usitatissimum L. callus cultures induced by different concentrations of Fe3O4 nanoparticles. Two parallel experiments were performed: experiment A, where flax explants were grown on medium supplemented with 0.5 mg/l, 1 mg/l, and 1.5 mg/l Fe3O4 NPs for callus culture obtaining, and experiment B, where calluses obtained from basal MS medium were transported into medium supplemented with concentrations of NPs identical to experiment A. Obtained results demonstrate similarly in both experiments that 25 nm Fe3O4 NPs pass into callus cells and induce low toxicity level in the callus cultures. Nevertheless, calluses from experiment A showed 100% embryogenesis in comparison with experiment B where 100% rhizogenesis was noticed. It could be associated with different stress levels and adaptation time for explants and calluses that were transported into medium with Fe3O4 NPs supplementation
Miezu miltrasas izraisitaja (Blumeria graminis f.sp. hordei) Daugavpils populacijas genetiskas strukturas ipatnibas
Separate summary in Latvian and English, 47 p.Available from Latvian Academic Library / LAL - Latvian Academic LibrarySIGLELVLatvi
Impact of iron oxide nanoparticles on yellow medick (Medicago falcata L.) plants
A large number of studies have explored the effects of various nanoparticles (NPs) on different economically important plant species. In this study, yellow medick plants were grown for five weeks using hydroponics with the addition of Fe3O4 NPs at 1, 2 and 4 mg/L. Plant morphology, chlorophyll a, genotoxicity and expression of miR159c, one of the most important plant miRNA that is involved in plant response to fungal infections, were investigated. The results indicated that Fe3O4 NPs significantly increased plant root length (9%–32%), chlorophyll a fluorescence (1.94–2.8-fold), miRNA expression (0.31–0.42-fold), induced genotoxicity and reduced genome stability (12.5%–13.3%), compared to those of the control. The study demonstrated that Fe3O4 NPs simultaneously induce genome instability in yellow medick and increase expression of miR159c. Therefore, Fe3O4 NPs can be used to increase plant resistance to fungal diseases, such as powdery mildew
Effect of Fe3O4 and CuO Nanoparticles on Morphology, Genotoxicity, and miRNA Expression on Different Barley (Hordeum vulgare L.) Genotypes
Metal nanoparticles (NPs) have an influence on plant growth and development. They can alter plant shoot and root length, fresh biomass production, and even influence the genome. Nanoparticles are also able to affect expression levels of plant microRNAs. MicroRNAs are able to protect plants from biotic stress, including pathogens which cause powdery mildew. In this study, Hordeum vulgare L. varieties “Marthe” and “KWS Olof” were grown in hydroponics with magnetic iron oxide (Fe3O4) and copper oxide (CuO) NPs added at 17, 35, and 70 mg/L. Plant morphology, genotoxicity, and expression of miR156a were investigated. The Fe3O4 and CuO NPs demonstrated different effects on the barley varieties, namely, Fe3O4 nanoparticles increased plant shoot and root lengths and fresh biomass, while CuO nanoparticles decreased them. CuO NPs presence caused larger changes on barley genome compared to Fe3O4 NPs. Thus, Fe3O4 NPs reduced genome stability to 72% in the “Marthe” variety and to 76.34% in the “KWS Olof” variety, while CuO NPs reduced genome stability to 53.33% in “Marthe” variety and in the “KWS Olof” variety to 68.81%. The miR156a expression levels after Fe3O4 NPs treatment did not change in the “Marthe” variety, but increased in the “KWS Olof” variety, while CuO NPs treatment increased miRNA expression levels in the “Marthe” variety but decrease them in the “KWS Olof” variety. As NPs are able to influence miRNA expression and miRNAs can affect the plant resistance, obtained results suggest that tested NPs may alter plant resistance response to pathogens
Case Study of Somaclonal Variation in Resistance Genes Mlo and Pme3 in Flaxseed (Linum usitatissimum L.) Induced by Nanoparticles
Nanoparticles influence on genome is investigated worldwide. The appearance of somaclonal variation is a cause of great concern for any micropropagation system. Somaclonal variation describes the tissue-culture-induced phenotypic and genotypic variations. This paper shows the results of somaclonal variation in two resistance genes pectin methylesterase and Mlo-like protein in all tissue culture development stages, as donor plant, calluses, and regenerants of Linum usitatissimum induced by gold and silver nanoparticles. In this paper, it was essential to obtain DNA material from all tissue culture development stages from one donor plant to record changes in each nucleotide sequence. Gene region specific primers were developed for resistance genes such as Mlo and Pme3 to define the genetic variability in tissue culture of L. usitatissimum. In recent years, utilization of gold and silver nanoparticles in tissue culture is increased and the mechanisms of changes in genome induced by nanoparticles still remain unclear. Obtained data show the somaclonal variation increase in calluses obtained from one donor plant and grown on medium supplemented by gold nanoparticles (Mlo 14.68 ± 0.98; Pme3 2.07 ± 0.87) or silver nanoparticles (Mlo 12.01 ± 0.43; Pme3 10.04 ± 0.46) and decrease in regenerants. Morphological parameters of calluses showed a number of differences between each investigated culture group
Case Study of Somaclonal Variation in Resistance Genes Mlo and Pme3 in Flaxseed (Linum usitatissimum L.) Induced by Nanoparticles
Nanoparticles influence on genome is investigated worldwide. The appearance of somaclonal variation is a cause of great concern for any micropropagation system. Somaclonal variation describes the tissue-culture-induced phenotypic and genotypic variations. This paper shows the results of somaclonal variation in two resistance genes pectin methylesterase and Mlo-like protein in all tissue culture development stages, as donor plant, calluses, and regenerants of Linum usitatissimum induced by gold and silver nanoparticles. In this paper, it was essential to obtain DNA material from all tissue culture development stages from one donor plant to record changes in each nucleotide sequence. Gene region specific primers were developed for resistance genes such as Mlo and Pme3 to define the genetic variability in tissue culture of L. usitatissimum. In recent years, utilization of gold and silver nanoparticles in tissue culture is increased and the mechanisms of changes in genome induced by nanoparticles still remain unclear. Obtained data show the somaclonal variation increase in calluses obtained from one donor plant and grown on medium supplemented by gold nanoparticles (Mlo 14.68±0.98; Pme3 2.07±0.87) or silver nanoparticles (Mlo 12.01±0.43; Pme3 10.04±0.46) and decrease in regenerants. Morphological parameters of calluses showed a number of differences between each investigated culture group
Case Study of Somaclonal Variation in Resistance Genes Mlo and Pme3 in Flaxseed (Linum usitatissimum L.) Induced by Nanoparticles
Nanoparticles influence on genome is investigated worldwide. The appearance of somaclonal variation is a cause of great concern for any micropropagation system. Somaclonal variation describes the tissue-culture-induced phenotypic and genotypic variations. This paper shows the results of somaclonal variation in two resistance genes pectin methylesterase and Mlo-like protein in all tissue culture development stages, as donor plant, calluses, and regenerants of Linum usitatissimum induced by gold and silver nanoparticles. In this paper, it was essential to obtain DNA material from all tissue culture development stages from one donor plant to record changes in each nucleotide sequence. Gene region specific primers were developed for resistance genes such as Mlo and Pme3 to define the genetic variability in tissue culture of L. usitatissimum. In recent years, utilization of gold and silver nanoparticles in tissue culture is increased and the mechanisms of changes in genome induced by nanoparticles still remain unclear. Obtained data show the somaclonal variation increase in calluses obtained from one donor plant and grown on medium supplemented by gold nanoparticles (Mlo 14.68±0.98; Pme3 2.07±0.87) or silver nanoparticles (Mlo 12.01±0.43; Pme3 10.04±0.46) and decrease in regenerants. Morphological parameters of calluses showed a number of differences between each investigated culture group
In Vivo Biosynthesis of Au and Ag NPs Using Two <i>Medicago sativa</i> L. Genotypes
The nano size as well as physical and chemical properties of Au and Ag nanoparticles (NPs) allow them to be used in medicine or plant protection, but chemical solvents used during synthesis makes them toxic and pose a threat to the environment. Chemical NP synthesis can be replaced by in vivo synthesis in which independently growing plants such as alfalfa take up and then split the precursor in their cells down to nano size using synthesis-promoting solvent-biomolecules, which can break down materials without free radicals and have anti-inflammatory, antioxidant effects, making NPs environmentally benign. In this study, two-week-old seedlings of two Medicago sativa L. genotypes, ‘Kometa’ and ‘la Bella’, were exposed to two precursors (AgNO3, HAuCl4) for 24 and 48 h to determine whether in vivo synthesis is possible. Two-beam and certain wavelength spectrophotometry and confocal microscopy confirmed statistically significant (p < 0.05) changes in light absorption and light fluorescence compared to the control. Confocal microscopy showed both precursors visible in the roots of both genotypes. Currently, NP synthesis and visualisation methods require a complex, expensive, and time-consuming sequence of methods. It is important to find an effective, environmentally friendly, and as cheap and simple as possible method for the biosynthesis of NPs
Detection and Microscopy of Alnus glutinosa Pollen Fluorescence Peculiarities
Alnus glutinosa is an important woody plant in Lithuanian forest ecosystems. Knowledge of fluorescence properties of black alder pollen is necessary for scientific and practical purposes. By the results of the study, we aimed to evaluate possibilities of identifying Alnus glutinosa pollen fluorescence properties by modeling ozone effect and applying two different fluorescence-based devices. To implement the experiments, black alder pollen was collected in a typical habitat during the annual flowering period in 2018–2019. There were three groups of experimental variants, which differed in the duration of exposure to ozone, conditions of pollen storage before the start of the experiment, and the exposure time. Data for pollen fluorescence analysis were collected using two methods. The microscopy method was used in order to evaluate the possibility of employing image analysis systems for investigation of pollen fluorescence. The second data collection method is related to an automatic device identifying pollen in real time, which uses the fluorescence method in the pollen recognition process. Data were assessed employing image analysis and principal component analysis (PCA) methods. Digital images of ozone-exposed pollen observed under the fluorescence microscope showed the change of the dominant green colour toward the blue spectrum. Meanwhile, the automatic detector detects more pollen whose fluorescence is at the blue light spectrum. It must be noted that assessing pollen fluorescence several months after exposure to ozone, no effect of ozone on fluorescence remains