25 research outputs found

    O uso das novas tecnologias nas aulas de Geografia para a melhoria do ensino e aprendizagem em escolas de ensino básico

    Get PDF
    Este trabalho tem como objetivo apresentar a importância do uso das novas tecnologias como instrumento para a melhoria do ensino e aprendizagem em Geografia. A atividade foi realizada em duas escolas do ensino básico na cidade de Fortaleza no ano 2014, onde se desenvolveram práticas com o uso de recursos tecnológicos, tais como a plataforma Moodle, criação e reprodução de slides, além de vídeos, havendo uma maior socialização e produção de conhecimentos e uma nova forma de conduzir as aulas de Geografia. Podemos perceber a importância e os desafios quanto ao uso das novas tecnologias

    Developmental Fluoxetine Exposure Normalizes the Long-Term Effects of Maternal Stress on Post-Operative Pain in Sprague-Dawley Rat Offspring

    Get PDF
    Early life events can significantly alter the development of the nociceptive circuit. In fact, clinical work has shown that maternal adversity, in the form of depression, and concomitant selective serotonin reuptake inhibitor (SSRI) treatment influence nociception in infants. The combined effects of maternal adversity and SSRI exposure on offspring nociception may be due to their effects on the developing hypothalamic-pituitary-adrenal (HPA) system. Therefore, the present study investigated long-term effects of maternal adversity and/or SSRI medication use on nociception of adult Sprague-Dawley rat offspring, taking into account involvement of the HPA system. Dams were subject to stress during gestation and were treated with fluoxetine (2×/5 mg/kg/day) prior to parturition and throughout lactation. Four groups of adult male offspring were used: 1. Control+Vehicle, 2. Control+Fluoxetine, 3. Prenatal Stress+Vehicle, 4. Prenatal Stress+Fluoxetine. Results show that post-operative pain, measured as hypersensitivity to mechanical stimuli after hind paw incision, was decreased in adult offspring subject to prenatal stress alone and increased in offspring developmentally exposed to fluoxetine alone. Moreover, post-operative pain was normalized in prenatally stressed offspring exposed to fluoxetine. This was paralleled by a decrease in corticosteroid binding globulin (CBG) levels in prenatally stressed offspring and a normalization of serum CBG levels in prenatally stressed offspring developmentally exposed to fluoxetine. Thus, developmental fluoxetine exposure normalizes the long-term effects of maternal adversity on post-operative pain in offspring and these effects may be due, in part, to the involvement of the HPA system

    Fluoxetine during Development Reverses the Effects of Prenatal Stress on Depressive-Like Behavior and Hippocampal Neurogenesis in Adolescence

    Get PDF
    Depression during pregnancy and the postpartum period is a growing health problem, which affects up to 20% of women. Currently, selective serotonin reuptake inhibitor (SSRIs) medications are commonly used for treatment of maternal depression. Unfortunately, there is very little research on the long-term effect of maternal depression and perinatal SSRI exposure on offspring development. Therefore, the aim of this study was to determine the role of exposure to fluoxetine during development on affective-like behaviors and hippocampal neurogenesis in adolescent offspring in a rodent model of maternal depression. To do this, gestationally stressed and non-stressed Sprague-Dawley rat dams were treated with either fluoxetine (5 mg/kg/day) or vehicle beginning on postnatal day 1 (P1). Adolescent male and female offspring were divided into 4 groups: 1) prenatal stress+fluoxetine exposure, 2) prenatal stress+vehicle, 3) fluoxetine exposure alone, and 4) vehicle alone. Adolescent offspring were assessed for anxiety-like behavior using the Open Field Test and depressive-like behavior using the Forced Swim Test. Brains were analyzed for endogenous markers of hippocampal neurogenesis via immunohistochemistry. Results demonstrate that maternal fluoxetine exposure reverses the reduction in immobility evident in prenatally stressed adolescent offspring. In addition, maternal fluoxetine exposure reverses the decrease in hippocampal cell proliferation and neurogenesis in maternally stressed adolescent offspring. This research provides important evidence on the long-term effect of fluoxetine exposure during development in a model of maternal adversity

    Developmental fluoxetine exposure and prenatal stress alter sexual differentiation of the brain and reproductive behavior in male rat offspring.

    No full text
    International audienceDepression during pregnancy and postpartum is a significant health problem and affects up to 20% of women. While selective serotonin reuptake inhibitor (SSRI) medications are the drug of choice for treatment of maternal depression, the combined effect of maternal depression and perinatal SSRI exposure on offspring development is poorly investigated. Our aim was to determine the role of exposure to fluoxetine during development on sexual behavior and sexually dimorphic brain structures in male offspring using a rodent model of maternal adversity. Sprague-Dawley rat dams were stressed during gestation and were chronically treated throughout lactation with either fluoxetine or vehicle beginning on postnatal day 1. Four groups of offspring were used: (1) Control+Vehicle, (2) Control+Fluoxetine, (3) Prenatal Stress+Vehicle, and (4) Prenatal Stress+Fluoxetine. We show here that developmental fluoxetine treatment decreases the anogenital distance in juvenile male offspring. In adult male offspring, maternal fluoxetine treatment results in a decrease in the number of intromissions, a longer latency to the first intromission, and a longer latency to the first ejaculation. Furthermore, developmental fluoxetine and/or prenatal stress decrease the area of the sexually dimorphic nucleus of the preoptic area (SDN-POA). Prenatal stress, but not exposure to developmental fluoxetine, decreases the number of tyrosine hydroxylase (TH)-positive cells in anteroventral periventricular nucleus (AVPv) and the volume of the posterior bed nucleus of the stria terminalis (pBST) in male offspring. These results provide important evidence for the long-term impact of maternal adversity and maternal fluoxetine use on the development of primary endocrinology systems in juvenile and adult male offspring

    Developmental fluoxetine exposure facilitates sexual behavior in female offspring.

    No full text
    International audienceA growing number of infants are being exposed to selective serotonin reuptake inhibitor (SSRI) medications during the perinatal period. SSRIs target the serotoninergic system and are a popular treatment for maternal mood disorders. Serotonin itself plays a key role in the sexual differentiation through its role in the development of the hypothalamic-pituitary-gonadal axis, and previous research has shown that developmental SSRI exposure has an effect on sexual behavior in male offspring. Our aim was to determine the role of developmental exposure to a popular SSRI medication, fluoxetine, on sexual differentiation of the brain and behavior in female offspring using a rodent model of maternal adversity. Stressed and non-stressed Sprague-Dawley rat dams were chronically treated with either fluoxetine (5 mg/kg/day) or vehicle beginning on postnatal day 1. Four groups of female offspring were used: (1) control + vehicle, (2) control + fluoxetine, (3) prenatal stress + vehicle, and (4) prenatal stress + fluoxetine. Primary results show that in adult female offspring, developmental fluoxetine exposure facilitates proceptive and receptive behaviors with a significant increase in the number of proceptive behaviors, a significant increase in the lordosis quotient, and a significant decrease in the rejection quotient. This research contributes in the understanding of the long-term impact developmental fluoxetine exposure on the hypothalamus-pituitary-gonadal (HPG) system in adult female offspring
    corecore