17 research outputs found

    The mechanisms of androgen effects on body composition: mesenchymal pluripotent cell as the target of androgen action

    Get PDF
    Testosterone supplementation increases muscle mass primarily by inducing muscle fiber hypertrophy; however, the mechanisms by which testosterone exerts its anabolic effects on the muscle are poorly understood. The prevalent view is that testosterone improves net muscle protein balance by stimulating muscle protein synthesis, decreasing muscle protein degradation, and improving the reutilization of amino acids. However, the muscle protein synthesis hypothesis does not adequately explain testosterone-induced changes in fat mass, myonuclear number, and satellite cell number. We postulate that testosterone promotes the commitment of pluripotent stem cells into the myogenic lineage and inhibits their differentiation into the adipogenic lineage. The hypothesis that the primary site of androgen action is the pluripotent stem cell provides a unifying explanation for the observed reciprocal effects of testosterone on muscle and fat mass

    Loss of the Putative Catalytic Domain of HDAC4 Leads to Reduced Thermal Nociception and Seizures while Allowing Normal Bone Development

    Get PDF
    Histone deacetylase 4 (HDAC4) has been associated with muscle & bone development [1]–[6]. N-terminal MEF2 and RUNX2 binding domains of HDAC4 have been shown to mediate these effects in vitro. A complete gene knockout has been reported to result in premature ossification and associated defects resulting in postnatal lethality [6]. We report a viral insertion mutation that deletes the putative deacetylase domain, while preserving the N-terminal portion of the protein. Western blot and immuno-precipitation analysis confirm expression of truncated HDAC4 containing N-terminal amino acids 1-747. These mutant mice are viable, living to at least one year of age with no gross defects in muscle or bone. At 2–4 months of age no behavioral or physiological abnormalities were detected except for an increased latency to respond to a thermal nociceptive stimulus. As the mutant mice aged past 5 months, convulsions appeared, often elicited by handling. Our findings confirm the sufficiency of the N-terminal domain for muscle and bone development, while revealing other roles of HDAC4

    Genetic Disruption of Both Tryptophan Hydroxylase Genes Dramatically Reduces Serotonin and Affects Behavior in Models Sensitive to Antidepressants

    Get PDF
    The neurotransmitter serotonin (5-HT) plays an important role in both the peripheral and central nervous systems. The biosynthesis of serotonin is regulated by two rate-limiting enzymes, tryptophan hydroxylase-1 and -2 (TPH1 and TPH2). We used a gene-targeting approach to generate mice with selective and complete elimination of the two known TPH isoforms. This resulted in dramatically reduced central 5-HT levels in Tph2 knockout (TPH2KO) and Tph1/Tph2 double knockout (DKO) mice; and substantially reduced peripheral 5-HT levels in DKO, but not TPH2KO mice. Therefore, differential expression of the two isoforms of TPH was reflected in corresponding depletion of 5-HT content in the brain and periphery. Surprisingly, despite the prominent and evolutionarily ancient role that 5-HT plays in both vertebrate and invertebrate physiology, none of these mutations resulted in an overt phenotype. TPH2KO and DKO mice were viable and normal in appearance. Behavioral alterations in assays with predictive validity for antidepressants were among the very few phenotypes uncovered. These behavioral changes were subtle in the TPH2KO mice; they were enhanced in the DKO mice. Herein, we confirm findings from prior descriptions of TPH1 knockout mice and present the first reported phenotypic evaluations of Tph2 and Tph1/Tph2 knockout mice. The behavioral effects observed in the TPH2 KO and DKO mice strongly confirm the role of 5-HT and its synthetic enzymes in the etiology and treatment of affective disorders

    Glutamate receptor activity is required for normal development of tectal cell dendrites in

    No full text
    Glutamatergic retinotectal inputs mediated principally by NMDA receptors can be recorded from optic tectal neurons early during their morphological development in Xenopus tadpoles. As tectal cell dendrites elaborate, retinotectal synaptic responses acquire an AMPA receptor-mediated synaptic component, in addition to the NMDA component. Here, we tested whether glutamatergic activity was required for the elaboration of dendritic arbors in Xenopus optic tectal neurons. In vivo time-lapse imaging of single DiI-labeled neurons shows that the NMDA receptor antagonist APV (100 �M) blocked the early development of the tectal cell dendritic arbor, whereas the AMPA receptor antagonist CNQX (20 �M) or the sodium channel blocker TTX (1 �M) did not. The decreased dendritic development is attributable to failure to add new branches and extend preexisting branches. These observations indicate that NMDAtyp

    Characterization of PTPRG in Knockdown and Phosphatase-Inactive Mutant Mice and Substrate Trapping Analysis of PTPRG in Mammalian Cells

    Get PDF
    <div><p>Receptor tyrosine phosphatase gamma (PTPRG, or RPTPγ) is a mammalian receptor-like tyrosine phosphatase which is highly expressed in the nervous system as well as other tissues. Its function and biochemical characteristics remain largely unknown. We created a knockdown (KD) line of this gene in mouse by retroviral insertion that led to 98–99% reduction of RPTPγ gene expression. The knockdown mice displayed antidepressive-like behaviors in the tail-suspension test, confirming observations by Lamprianou et al. 2006. We investigated this phenotype in detail using multiple behavioral assays. To see if the antidepressive-like phenotype was due to the loss of phosphatase activity, we made a knock-in (KI) mouse in which a mutant, RPTPγ C1060S, replaced the wild type. We showed that human wild type RPTPγ protein, expressed and purified, demonstrated tyrosine phosphatase activity, and that the RPTPγ C1060S mutant was completely inactive. Phenotypic analysis showed that the KI mice also displayed some antidepressive-like phenotype. These results lead to a hypothesis that an RPTPγ inhibitor could be a potential treatment for human depressive disorders. In an effort to identify a natural substrate of RPTPγ for use in an assay for identifying inhibitors, “substrate trapping” mutants (C1060S, or D1028A) were studied in binding assays. Expressed in HEK293 cells, these mutant RPTPγs retained a phosphorylated tyrosine residue, whereas similarly expressed wild type RPTPγ did not. This suggested that wild type RPTPγ might auto-dephosphorylate which was confirmed by an <em>in vitro</em> dephosphorylation experiment. Using truncation and mutagenesis studies, we mapped the auto-dephosphorylation to the Y1307 residue in the D2 domain. This novel discovery provides a potential natural substrate peptide for drug screening assays, and also reveals a potential functional regulatory site for RPTPγ. Additional investigation of RPTPγ activity and regulation may lead to a better understanding of the biochemical underpinnings of human depression.</p> </div

    RPTPγ dephosphorylated itself in vitro.

    No full text
    <p>Wild type RPTPγ or RPTPγ C1060S plasmids were transiently transfected into HEK293F and isolated from lysates with anti c-myc/protein G sepharoses. RPTPγ wild type or C1060S on the protein G sepharose was denatured in 8 M urea to linearized protein as substrates for reaction following. The Purified RPTPγ wild type, C1060s sepharose beads was then incubated with recombinant, active purified RPTPγ cyto enzymes in assay buffer with urea at a final concentration of 0.375 M. Lanes 1 and 2 are RPTPγ WT and RPTPγ C1060S on protein G sepharose in a mock reaction without phosphatase in the same buffer, and lanes 1′and 2′ are RPTPγ wild type and RPTPγ C1060S reacted with RPTPγ cytoplasmic region as phosphatase. Samples were subjected to western blot analysis using anti-phosphotyrosine 4G10 mAb. The densitometry of each band was determined to estimate the extent of removal of phosphotyrosine on the protein. The reacted IgG heavy chain bands were used as internal control to ensure equal loading of samples. It is estimated by densitometry that 75% of phosphotyrosine from RPTPC1060S was removed by addition of RPTPγ enzyme.</p

    Determination of Km of phosphatase RPTPγ on peptide substrate ATQDD(pY)VLEVR (derived from peptide adjacent to Y1307).

    No full text
    <p>Figure here shows Pi released (microM per minute) was plotted against phospho-peptide in a reaction in which Vmax was 2.1 µM/mim/14 nM RPTPγ and Km is 49.6 µM, using one site nonlinear binding algorithm in Graphpad Prism.</p

    Behavioral analysis on the wild type (WT) and knockdown mutant mice (MT).

    No full text
    <p>See details in the text. A and B. Repeated open field (A) and tail suspension tests (B) on the same animals. * - P<0.05, *** - P<0.001, compared to WT on the same day. C. Immobility time in the forced swim test. * - P<0.05, *** - P<0.001, compared to WT for the same measure.</p
    corecore