36 research outputs found

    Inclusion and Empowerment of Export Processing Zone Women in Sri Lanka: Stakeholders Perceptions and Perspectives

    Get PDF
    The vast majority of research on women who work in Export Processing Zones (EPZs) and in Sri Lanka focuses on the ‘lived experiences’ of the women themselves. The other major source of research with a similar focus comes from macro-economic perspectives, focusing on policy and economic rationale behind the emergence of EPZs and global export-oriented manufacturing in general. This paper provides insights into the issues of empowerment and inclusion of Sri Lankan EPZ workers, but does so from the perspective of 22 stakeholders in Sri Lanka who have unique insights to offer. The stakeholders were factory managers; senior public administrators; senior union representatives and women’s NGO representatives. In so doing the paper provides a unique insight into the issues faced by young women who work in EPZs. It also points to areas where empowerment and inclusion of women is occurring and areas where it is not

    Black Beans, Fiber, and Antioxidant Capacity Pilot Study: Examination of Whole Foods vs. Functional Components on Postprandial Metabolic, Oxidative Stress, and Inflammation in Adults with Metabolic Syndrome.

    Get PDF
    Beans (Phaseolus vulgaris) contain bioactive components with functional properties that may modify cardiovascular risk. The aims of this pilot study were to evaluate the ability of black beans to attenuate postprandial metabolic, oxidative stress, and inflammatory responses and determine relative contribution of dietary fiber and antioxidant capacity of beans to the overall effect. In this randomized, controlled, crossover trial, 12 adults with metabolic syndrome (MetS) consumed one of three meals (black bean (BB), fiber matched (FM), and antioxidant capacity matched (AM)) on three occasions that included blood collection before (fasting) and five hours postprandially. Insulin was lower after the BB meal, compared to the FM or AM meals (p < 0.0001). A significant meal × time interaction was observed for plasma antioxidant capacity (p = 0.002) revealing differences over time: AM > BB > FM. Oxidized LDL (oxLDL) was not different by meal, although a trend for declining oxLDL was observed after the BB and AM meals at five hours compared to the FM meal. Triglycerides and interleukin-6 (IL-6) increased in response to meals (p < 0.0001). Inclusion of black beans with a typical Western-style meal attenuates postprandial insulin and moderately enhances postprandial antioxidant endpoints in adults with MetS, which could only be partly explained by fiber content and properties of antioxidant capacity

    Cigarette smoke regulates VEGFR2-mediated survival signaling in rat lungs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2)-mediated survival signaling is critical to endothelial cell survival, maintenance of the vasculature and alveolar structure and regeneration of lung tissue. Reduced VEGF and VEGFR2 expression in emphysematous lungs has been linked to increased endothelial cell death and vascular regression. Previously, we have shown that CS down-regulated the VEGFR2 and its downstream signaling in mouse lungs. However, the VEGFR2-mediated survival signaling in response to oxidants/cigarette smoke (CS) is not known. We hypothesized that CS exposure leads to disruption of VEGFR2-mediated endothelial survival signaling in rat lungs.</p> <p>Methods</p> <p>Adult male Sprague-Dawley rats were exposed CS for 3 days, 8 weeks and 6 months to investigate the effect of CS on VEGFR2-mediated survival signaling by measuring the Akt/PI3-kinase/eNOS downstream signaling in rat lungs.</p> <p>Results and Discussion</p> <p>We show that CS disrupts VEGFR2/PI3-kinase association leading to decreased Akt and eNOS phosphorylation. This may further alter the phosphorylation of the pro-apoptotic protein Bad and increase the Bad/Bcl-xl association. However, this was not associated with a significant lung cell death as evidenced by active caspase-3 levels. These data suggest that although CS altered the VEGFR2-mediated survival signaling in the rat lungs, but it was not sufficient to cause lung cell death.</p> <p>Conclusion</p> <p>The rat lungs exposed to CS in acute, sub-chronic and chronic levels may be representative of smokers where survival signaling is altered but was not associated with lung cell death whereas emphysema is known to be associated with lung cell apoptosis.</p

    Deacetylases and NF-kappaB in redox regulation of cigarette smoke-induced lung inflammation: epigenetics in pathogenesis of COPD

    Get PDF
    Oxidative stress has been implicated in the pathogenesis of several inflammatory lung disorders including chronic obstructive pulmonary disease (COPD) due to its effect on pro-inflammatory gene transcription. Cigarette smoke-mediated oxidative stress activates NF-κB-dependent transcription of pro-inflammatory mediators either through activation of inhibitor κB-α kinase (IKK) and/or the enhanced recruitment and activation of transcriptional co-activators. Enhanced NF-κB-co-activator complex formation results in targeted increase in chromatin modifications, such as histone acetylation leading to inflammatory gene transcription. NF-κB-dependent gene expression, at least in part, is regulated by changes in deacetylases such as histone deacetylases (HDACs) and sirtuins. Cigarette smoke and oxidants also alter the levels/activity of HDAC by post-translational modifications and in doing so further induces gene expression of pro-inflammatory mediators. In addition, cigarette smoke/oxidants can reduce glucocorticoid sensitivity by attenuating HDAC2 activity and expression, which may account for the glucocorticoid insensitivity in patients with COPD. Understanding the mechanisms of NF-κB regulation, and the balance between histone acetylation and deacetylation may lead to the development of novel therapies based on the pharmacological manipulation of IKK and deacetylases in lung inflammation and injury

    Kappagoda T. Effect of grape seed extract on blood pressure in subjects with the metabolic syndrome. Metabolism. 2009; 58:1743–1746. doi: 10

    No full text
    Abstract This study was undertaken to determine whether grape seed extracts (GSE) that contain powerful vasodilator phenolic compounds lower blood pressure in subjects with the metabolic syndrome. The subjects were randomized into 3 groups-(a) placebo, (b) 150 mg GSE per day, and (c) 300 mg GSE per day-and treated for 4 weeks. Serum lipids and blood glucose were measured at the beginning of the study and at the end. Blood pressure was recorded using an ambulatory monitoring device at the start of the treatment period and at the end. Both the systolic and diastolic blood pressures were lowered after treatment with GSE as compared with placebo. There were no significant changes in serum lipids or blood glucose values. These findings suggest that GSE could be used as a nutraceutical in a lifestyle modification program for patients with the metabolic syndrome

    Kappagoda T. Effect of grape seed extract on blood pressure in subjects with the metabolic syndrome. Metabolism. 2009; 58:1743–1746. doi: 10

    No full text
    Abstract This study was undertaken to determine whether grape seed extracts (GSE) that contain powerful vasodilator phenolic compounds lower blood pressure in subjects with the metabolic syndrome. The subjects were randomized into 3 groups-(a) placebo, (b) 150 mg GSE per day, and (c) 300 mg GSE per day-and treated for 4 weeks. Serum lipids and blood glucose were measured at the beginning of the study and at the end. Blood pressure was recorded using an ambulatory monitoring device at the start of the treatment period and at the end. Both the systolic and diastolic blood pressures were lowered after treatment with GSE as compared with placebo. There were no significant changes in serum lipids or blood glucose values. These findings suggest that GSE could be used as a nutraceutical in a lifestyle modification program for patients with the metabolic syndrome

    Black Beans, Fiber, and Antioxidant Capacity Pilot Study: Examination of Whole Foods vs. Functional Components on Postprandial Metabolic, Oxidative Stress, and Inflammation in Adults with Metabolic Syndrome

    Get PDF
    Beans (Phaseolus vulgaris) contain bioactive components with functional properties that may modify cardiovascular risk. The aims of this pilot study were to evaluate the ability of black beans to attenuate postprandial metabolic, oxidative stress, and inflammatory responses and determine relative contribution of dietary fiber and antioxidant capacity of beans to the overall effect. In this randomized, controlled, crossover trial, 12 adults with metabolic syndrome (MetS) consumed one of three meals (black bean (BB), fiber matched (FM), and antioxidant capacity matched (AM)) on three occasions that included blood collection before (fasting) and five hours postprandially. Insulin was lower after the BB meal, compared to the FM or AM meals (p &lt; 0.0001). A significant meal × time interaction was observed for plasma antioxidant capacity (p = 0.002) revealing differences over time: AM &gt; BB &gt; FM. Oxidized LDL (oxLDL) was not different by meal, although a trend for declining oxLDL was observed after the BB and AM meals at five hours compared to the FM meal. Triglycerides and interleukin-6 (IL-6) increased in response to meals (p &lt; 0.0001). Inclusion of black beans with a typical Western-style meal attenuates postprandial insulin and moderately enhances postprandial antioxidant endpoints in adults with MetS, which could only be partly explained by fiber content and properties of antioxidant capacity

    Using the Avocado to Test the Satiety Effects of a Fat-Fiber Combination in Place of Carbohydrate Energy in a Breakfast Meal in Overweight and Obese Men and Women: A Randomized Clinical Trial

    No full text
    This study aimed to investigate the satiety effects of isocalorically replacing carbohydrate energy in a meal with avocado-derived fats and fibers. In a randomized 3-arm, 6-h, crossover clinical trial, thirty-one overweight/obese adults consumed a low-fat control meal (CON, 76% carbohydrate, 14% fat as energy, 5 g fiber, ~640 kcal) or high-fat meals similar in total fat and energy, but increasing avocado-derived fat and fiber content from half (HA, 68 g; 51% carbohydrate, 40% fat as energy, 8.6 g fiber) or whole avocado (WA, 136 g; 50% carbohydrate, 43% fat as energy, 13.1 g fiber) on three separate occasions. Visual analog scales (VAS) assessed subjective satiety over 6 h. Hormones associated with satiety/appetite were measured in blood collected immediately after VAS. Stepwise multiple regression analysis was used to assess the relationship of VAS with hormones in WA and CON. Hunger suppression was enhanced after the WA compared to CON meal (p &lt; 0.01). Subjects indicated feeling more satisfied after both HA and WA than CON (p &lt; 0.05). Fullness was greater after CON and WA vs. HA (p &lt; 0.005). PYY and GLP-1 were significantly elevated after WA vs. CON (p &lt; 0.05), while insulin was significantly higher after CON vs. WA (p &lt; 0.0001). Ghrelin was suppressed more by CON than WA (p &lt; 0.05). Regression analysis indicated PYY was associated with subjective satiety after WA, whereas increased insulin predicted changes in subjective satiety after CON. Replacing carbohydrates in a high-carbohydrate meal with avocado-derived fat-fiber combination increased feelings of satiety mediated primarily by PYY vs. insulin. These findings may have important implications for addressing appetite management and metabolic concerns

    A Selective Role of Dietary Anthocyanins and Flavan-3-ols in Reducing the Risk of Type 2 Diabetes Mellitus: A Review of Recent Evidence

    No full text
    Type 2 diabetes mellitus (T2DM) is the most common form of DM and its prevalence is increasing worldwide. Because it is a progressive disease, prevention, early detection and disease course modification are possible. Diet plays a critical role in reducing T2DM risk. Therapeutic dietary approaches routinely recommend diets high in plant foods (i.e., vegetables, fruits, whole-grains). In addition to essential micronutrients and fiber, plant-based diets contain a wide-variety of polyphenols, specifically flavonoid compounds. Evidence suggests that flavonoids may confer specific benefits for T2DM risk reduction through pathways influencing glucose absorption and insulin sensitivity and/or secretion. The present review assesses the relationship between dietary flavonoids and diabetes risk reduction reviewing current epidemiology and clinical research. Collectively, the research indicates that certain flavonoids, explicitly anthocyanins and flavan-3-ols and foods rich in these compounds, may have an important role in dietary algorithms aimed to address diabetes risk factors and the development of T2DM
    corecore