14 research outputs found

    Rhizosphere Microbial Communities of \u3ci\u3eSpartina alternifloa\u3c/i\u3e and \u3ci\u3eJuncus roemerianus\u3c/i\u3e From Restored and Natural Tidal Marshes on Deer Island, Mississippi

    Get PDF
    The U. S. Gulf of Mexico is experiencing a dramatic increase in tidal marsh restoration actions, which involves planting coastal areas with smooth cordgrass (Spartina alterniflora) and black needlerush (Juncus roemerianus) for erosion control and to provide habitat for fish and wildlife. It can take decades for sedimentary cycles in restored marshes to approach reference conditions, and the contribution of the sediment microbial communities to these processes is poorly elucidated. In this study, we addressed this gap by comparing rhizosphere microbiomes of S. alterniflora and J. roemerianus from two restored marshes and a natural reference marsh located at Deer Island, MS. Our results revealed that plants from the restored and reference areas supported similar microbial diversity indicating the rapid colonization of planted grasses with indigenous soil microbiota. Although close in composition, the microbial communities from the three studied sites differed significantly in the relative abundance of specific taxa. The observed differences are likely driven by the host plant identity and properties of sediment material used for the creation of restored marshes. Some of the differentially distributed groups of bacteria include taxa involved in the cycling of carbon, nitrogen, and sulfur, and may influence the succession of vegetation at the restored sites to climax condition. We also demonstrated that plants from the restored and reference sites vary in the frequency of culturable rhizobacteria that exhibit traits commonly associated with the promotion of plant growth and suppression of phytopathogenic fungi. Our findings will contribute to the establishment of benchmarks for the assessment of the outcome of coastal restoration projects in the Gulf of Mexico and better define factors that affect the long-term resiliency of tidal marshes and their vulnerability to climate change

    Rhizosphere Microbial Communities of Spartina alterniflora and Juncus roemerianus From Restored and Natural Tidal Marshes on Deer Island, Mississippi

    Get PDF
    The U. S. Gulf of Mexico is experiencing a dramatic increase in tidal marsh restoration actions, which involves planting coastal areas with smooth cordgrass (Spartina alterniflora) and black needlerush (Juncus roemerianus) for erosion control and to provide habitat for fish and wildlife. It can take decades for sedimentary cycles in restored marshes to approach reference conditions, and the contribution of the sediment microbial communities to these processes is poorly elucidated. In this study, we addressed this gap by comparing rhizosphere microbiomes of S. alterniflora and J. roemerianus from two restored marshes and a natural reference marsh located at Deer Island, MS. Our results revealed that plants from the restored and reference areas supported similar microbial diversity indicating the rapid colonization of planted grasses with indigenous soil microbiota. Although close in composition, the microbial communities from the three studied sites differed significantly in the relative abundance of specific taxa. The observed differences are likely driven by the host plant identity and properties of sediment material used for the creation of restored marshes. Some of the differentially distributed groups of bacteria include taxa involved in the cycling of carbon, nitrogen, and sulfur, and may influence the succession of vegetation at the restored sites to climax condition. We also demonstrated that plants from the restored and reference sites vary in the frequency of culturable rhizobacteria that exhibit traits commonly associated with the promotion of plant growth and suppression of phytopathogenic fungi. Our findings will contribute to the establishment of benchmarks for the assessment of the outcome of coastal restoration projects in the Gulf of Mexico and better define factors that affect the long-term resiliency of tidal marshes and their vulnerability to climate change

    Evidence That Two ATP-Dependent (Lon) Proteases in Borrelia burgdorferi Serve Different Functions

    Get PDF
    The canonical ATP-dependent protease Lon participates in an assortment of biological processes in bacteria, including the catalysis of damaged or senescent proteins and short-lived regulatory proteins. Borrelia spirochetes are unusual in that they code for two putative ATP-dependent Lon homologs, Lon-1 and Lon-2. Borrelia burgdorferi, the etiologic agent of Lyme disease, is transmitted through the blood feeding of Ixodes ticks. Previous work in our laboratory reported that B. burgdorferi lon-1 is upregulated transcriptionally by exposure to blood in vitro, while lon-2 is not. Because blood induction of Lon-1 may be of importance in the regulation of virulence factors critical for spirochete transmission, the clarification of functional roles for these two proteases in B. burgdorferi was the object of this study. On the chromosome, lon-2 is immediately downstream of ATP-dependent proteases clpP and clpX, an arrangement identical to that of lon of Escherichia coli. Phylogenetic analysis revealed that Lon-1 and Lon-2 cluster separately due to differences in the NH2-terminal substrate binding domains that may reflect differences in substrate specificity. Recombinant Lon-1 manifested properties of an ATP-dependent chaperone-protease in vitro but did not complement an E. coli Lon mutant, while Lon-2 corrected two characteristic Lon-mutant phenotypes. We conclude that B. burgdorferi Lons -1 and -2 have distinct functional roles. Lon-2 functions in a manner consistent with canonical Lon, engaged in cellular homeostasis. Lon-1, by virtue of its blood induction, and as a unique feature of the Borreliae, may be important in host adaptation from the arthropod to a warm-blooded host

    Role of Nitrogen Limitation in Transformation of RDX (Hexahydro- 1,3,5-Trinitro-1,3,5-Triazine) by \u3ci\u3eGordonia\u3c/i\u3e sp. Strain KTR9

    Get PDF
    The transcriptome of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine)-degrading strain Gordonia sp. strain KTR9 and its glnR mutant were studied as a function of nitrogen availability to further investigate the observed ammonium-mediated inhibition of RDX degradation. The results indicate that nitrogen availability is a major determinant of RDX degradation and xplA gene expression in KTR9

    From raw materials to validated system: the construction of a genomic library and microarray to interpret systemic perturbations in Northern bobwhite

    No full text
    The limited availability of genomic tools and data for nonmodel species impedes computational and systems biology approaches in nonmodel organisms. Here we describe the development, functional annotation, and utilization of genomic tools for the avian wildlife species Northern bobwhite (Colinus virginianus) to determine the molecular impacts of exposure to 2,6-dinitrotoluene (2,6-DNT), a field contaminant of military concern. Massively parallel pyrosequencing of a normalized multitissue library of Northern bobwhite cDNAs yielded 71,384 unique transcripts that were annotated with gene ontology (GO), pathway information, and protein domain analysis. Comparative genome analyses with model organisms revealed functional homologies in 8,825 unique Northern bobwhite genes that are orthologous to 48% of Gallus gallus protein-coding genes. Pathway analysis and GO enrichment of genes differentially expressed in livers of birds exposed for 60 days (d) to 10 and 60 mg/kg/d 2,6-DNT revealed several impacts validated by RT-qPCR including: prostaglandin pathway-mediated inflammation, increased expression of a heme synthesis pathway in response to anemia, and a shift in energy metabolism toward protein catabolism via inhibition of control points for glucose and lipid metabolic pathways, PCK1 and PPARGC1, respectively. This research effort provides the first comprehensive annotated gene library for Northern bobwhite. Transcript expression analysis provided insights into the metabolic perturbations underlying several observed toxicological phenotypes in a 2,6-DNT exposure case study. Furthermore, the systemic impact of dinitrotoluenes on liver function appears conserved across species as PPAR signaling is similarly affected in fathead minnow liver tissue after exposure to 2,4-DNT
    corecore