6,444 research outputs found

    Potential phytotoxic and shading effects of invasive Fallopia (Polygonaceae) taxa on the germination of dominant native species

    Get PDF
    Two species of the genus Fallopia (F. sachalinensis, F. japonica, Polygonaceae) native to Asia, and their hybrid (F. ×bohemica), belong to the most noxious plant invaders in Europe. They impact highly on invaded plant communities, resulting in extremely poor native species richness. The low number of native species in invaded communities points to the possible existence of mechanisms suppressing their germination. In this study we assessed, under laboratory conditions, whether there are phytotoxic effects of the three Fallopia congeners on seed germination of three target species: two native species commonly growing in habitats that are often invaded by Fallopia taxa (Urtica dioica, Calamagrostis epigejos), and Lepidium sativum, a species commonly used in allelopathic bioassays as a control. Since Fallopia taxa form dense stands with high cover, we included varying light conditions as an additional factor, to simulate the effects of shading by leaf canopy on germination. The effects of aqueous extracts (2.5%, 5.0%, and 0% as a control) from dry leaves and rhizomes of the Fallopia congeners on germination of the target species were thus studied under two light regimes, simulating full daylight (white light) and light filtered through canopy (green light), and in dark as a control regime. Rhizome extracts did not affect germination. Light treatments yielded inconclusive results, indicating that poor germination and establishment of species in invaded stands is unlikely to be caused by shading alone. However, we found a pronounced phytotoxic effect of leaf extracts of Fallopia taxa, more so at 5.0% than 2.5% extract concentration. Fallopia sachalinensis exerted the largest negative effect on the germination of Urtica dioica, F. ×bohemica on that of C. epigejos, and F. japonica had invariably the lowest inhibitory effect on all test species. The weak phytotoxic effect of F. japonica corresponds to the results of previous studies that found this species to be generally a weaker competitor than its two congeners. Although these results do not necessarily provide direct evidence for allelopathic effects in the field, we demonstrate the potential phytotoxic effect of invasive Fallopia taxa on the germination of native species. This suggests that allelopathy may play a role in the impact of Fallopia invasion on species diversity of invaded communities

    The ecosystem and evolutionary contexts of allelopathy

    Get PDF
    Plants can release chemicals into the environment that suppress the growth and establishment of other plants in their vicinity, a process known as ‘allelopathy’. However, chemicals with allelopathic functions have other ecological roles, such as plant defense, nutrient chelation, and regulation of soil biota in ways that affect decomposition and soil fertility. These ecosystem-scale roles of allelopathic chemicals can augment, attenuate or modify their community-scale functions. In this review we explore allelopathy in the context of ecosystem properties, and through its role in exotic invasions consider how evolution might affect the intensity and importance of allelopathic interactions

    Sources and modes of action of invasive knotweed allelopathy : the effects of leaf litter and trained soil on the germination and growth of native plants

    Get PDF
    Invasive knotweeds, native to Eastern Asia, are among the most dominant plant invaders of European and North American temperate ecosystems. Recent studies indicate that one cause of this dominance might be allelopathy, but the possible sources and modes of action of this allelopathy are insufficiently understood. Here, we asked whether the invasive knotweed Fallopia × bohemica can exert allelopathic effects on native plants also through its leaf litter, or through persistent soil contaminants, and whether these affect the germination or growth of native plants. In a germination experiment with nine native species neither litter leachate, an aqueous extract of knotweed leaves added to the soil, nor trained soil with a history of Fallopia pre-cultivation suppressed the germination or early growth of natives. A mesocosm study with experimental native communities showed that the presence of F. × bohemica, although not a dominant in these communities, caused significant shifts of life-history strategy in two dominant natives, and that similar effects could be elicited through litter leachates or trained soil alone. However, there were hardly any effects on the biomass of natives. Our study indicates that knotweed allelopathy acts on the growth rather than germination of natives, and that soil contamination through persistent allelochemicals may not be a significant problem in habitat restoration. It also shows that allelopathic effects can sometimes be subtle changes in life-history and allocation patterns of the affected species

    Potential phytotoxic and shading effects of invasive Fallopia (Polygonaceae) taxa on the germination of dominant native species

    Get PDF
    Two species of the genus Fallopia (F. sachalinensis, F. japonica, Polygonaceae) native to Asia, and their hybrid (F. ×bohemica), belong to the most noxious plant invaders in Europe. They impact highly on invaded plant communities, resulting in extremely poor native species richness. The low number of native species in invaded communities points to the possible existence of mechanisms suppressing their germination. In this study we assessed, under laboratory conditions, whether there are phytotoxic effects of the three Fallopia congeners on seed germination of three target species: two native species commonly growing in habitats that are often invaded by Fallopia taxa (Urtica dioica, Calamagrostis epigejos), and Lepidium sativum, a species commonly used in allelopathic bioassays as a control. Since Fallopia taxa form dense stands with high cover, we included varying light conditions as an additional factor, to simulate the effects of shading by leaf canopy on germination. The effects of aqueous extracts (2.5%, 5.0%, and 0% as a control) from dry leaves and rhizomes of the Fallopia congeners on germination of the target species were thus studied under two light regimes, simulating full daylight (white light) and light filtered through canopy (green light), and in dark as a control regime. Rhizome extracts did not affect germination. Light treatments yielded inconclusive results, indicating that poor germination and establishment of species in invaded stands is unlikely to be caused by shading alone. However, we found a pronounced phytotoxic effect of leaf extracts of Fallopia taxa, more so at 5.0% than 2.5% extract concentration. Fallopia sachalinensis exerted the largest negative effect on the germination of Urtica dioica, F. ×bohemica on that of C. epigejos, and F. japonica had invariably the lowest inhibitory effect on all test species. The weak phytotoxic effect of F. japonica corresponds to the results of previous studies that found this species to be generally a weaker competitor than its two congeners. Although these results do not necessarily provide direct evidence for allelopathic effects in the field, we demonstrate the potential phytotoxic effect of invasive Fallopia taxa on the germination of native species. This suggests that allelopathy may play a role in the impact of Fallopia invasion on species diversity of invaded communities
    corecore