1,983 research outputs found

    Analytical study of electrostatic ion beam traps

    Full text link
    The use of electrostatic ion beam traps require to set many potentials on the electrodes (ten in our case), making the tuning much more difficult than with quadrupole traps. In order to obtain the best trapping conditions, an analytical formula giving the electrostatic potential inside the trap is required. In this paper, we present a general method to calculate the analytical expression of the electrostatic potential in any axisymmetric set of electrodes. We use conformal mapping to simplify the geometry of the boundary. The calculation is then performed in a space of simple geometry. We show that this method, providing excellent accuracy, allows to obtain the potential on the axis as an analytic function of the potentials applied to the electrodes, thus leading to fast, accurate and efficient calculations. We conclude by presenting stability maps depending on the potentials that enabled us to find the good trapping conditions for oxygen 4+ at much higher energies than what has been achieved until now.Comment: 9 page

    Formality and Star Products

    Full text link
    These notes, based on the mini-course given at the PQR2003 Euroschool held in Brussels in 2003, aim to review Kontsevich's formality theorem together with his formula for the star product on a given Poisson manifold. A brief introduction to the employed mathematical tools and physical motivations is also given.Comment: 49 pages, 9 figures; proceedings of the PQR2003 Euroschool. Version 2 has minor correction

    Minimum energy paths for conformational changes of viral capsids

    Get PDF
    In this work we study how a viral capsid can change conformation using techniques of Large Deviations Theory for stochastic differential equations. The viral capsid is a model of a complex system in which many units - the proteins forming the capsomers - interact by weak forces to form a structure with exceptional mechanical resistance. The destabilization of such a structure is interesting both per se, since it is related either to infection or maturation processes, and because it yields insights into the stability of complex structures in which the constitutive elements interact by weak attractive forces. We focus here on a simplified model of a dodecahederal viral capsid, and assume that the capsomers are rigid plaquettes with one degree of freedom each. We compute the most probable transition path from the closed capsid to the final configuration using minimum energy paths, and discuss the stability of intermediate states.Comment: 27 pages, 4 figures. New version, to appear in Physical Review

    Atomic Energy Levels with QED and Contribution of the Screened Self-Energy

    Get PDF
    We present an introduction to the principles behind atomic energy level calculations with Quantum Electrodynamics (QED) and the two-time Green's function method; this method allows one to calculate an effective Hamiltonian that contains all QED effects and that can be used to predict QED Lamb shifts of degenerate, quasidegenerate and isolated atomic levels.Comment: 4 pages, 6 figures, summary of a talk given at the QED2000 Conference held in Trieste, Italy in Oct. 200

    Degrees of freedom effect on fragmentation in tandem mass spectrometry of singly charged supramolecular aggregates of sodium sulfonates

    Get PDF
    The characteristic collision energy (CCE) to obtain 50% fragmentation of positively and negatively single charged non-covalent clusters has been measured. CCE was found to increase linearly with the degrees of freedom (DoF) of the precursor ion, analogously to that observed for synthetic polymers. This suggests that fragmentation behavior (e.g. energy randomization) in covalent molecules and clusters are similar. Analysis of the slope of CCE with molecular size (DoF) indicates that activation energy of fragmentation of these clusters (loss of a monomer unit) is similar to that of the lowest energy fragmentation of protonated leucine-enkephalin. Positively and negatively charged aggregates behave similarly, but the slope of the CCE vs DoF plot is steeper for positive ions, suggesting that these are more stable than their negative counterparts

    Hyperfine Quenching of the 4s4p3P04s4p ^{3}P_{0} Level in Zn-like Ions

    Full text link
    In this paper, we used the multiconfiguration Dirac-Fock method to compute with high precision the influence of the hyperfine interaction on the [Ar]3d104s4p3P0[Ar]3d^{10} 4s4p ^3P_0 level lifetime in Zn-like ions for stable and some quasi-stable isotopes of nonzero nuclear spin between Z=30 and Z=92. The influence of this interaction on the [Ar]3d104s4p3P1−[Ar]3d104s4p3P0[Ar]3d^{10} 4s4p ^3P_1 - [Ar]3d^{10} 4s4p ^3P_0 separation energy is also calculated for the same ions
    • 

    corecore