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Abstract 

The characteristic collision energy (CCE) to obtain 50% fragmentation of positively and negatively 

single charged non-covalent clusters has been measured. CCE was found to increase linearly with 

the degrees of freedom (DoF) of the precursor ion, analogously to that observed for synthetic 

polymers. This suggests that fragmentation behavior (e.g. energy randomization) in covalent 

molecules and clusters are similar. Analysis of the slope of CCE with molecular size (DoF) 

indicates that activation energy of fragmentation of these clusters (loss of a monomer unit) is 

similar to that of the lowest energy fragmentation of protonated leucine-enkephalin. Positively and 

negatively charged aggregates behave similarly, but the slope of the CCE vs DoF plot is steeper for 

positive ions, suggesting that these are more stable than their negative counterparts.  
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Introduction 

The effect of molecular size on fragmentation of ions formed by electron ionization (EI) has been 

largely investigated at the beginning of organic mass spectrometry1-3. On the ground of quasi-

equilibrium theory (QET), this effect is attributed to the rapid spreading of the energy conferred by 

electron ionization4-6 or chemical ionization7 to overall the vibrational Degrees of Freedom (DoF) 

Thus, if the same amount of energy is spread over a larger number of DoF, less energy is conferred 

to each DoF. This slows down fragmentation rates with the size of the ions.  

The advent of fast atom bombardment (FAB)8 followed by other soft ionization techniques, as the 

most widely used electrospray ionization (ESI)9 and matrix assisted laser desorption ionization 

(MALDI)10,11, makes Collision Induced Dissociation (CID) and tandem mass spectrometry12-15 the 

most widespread method to fragment ions either for analytical purposes or to obtain structural 

information. The low fragmentation efficiency of singly charged ion with m/z > 2,000 shows that 

this size effect occurs also in CID experiments16. This implies that collision energy conferred by the 

impact of target gas is likely to spread among all DoF in a short time (much less than the residence 

time in the collision cell, which is typically in the range of s-ms). In order to observe 

fragmentation therefore the parent ion needs more internal energy than that of the critical energy. 

The amount of excess energy required to observe fragments in the timescale of the mass 

spectrometric experiment has been called the “kinetic shift”14. The importance of this effect is 

generally recognized and has often been discussed.,This makes of particular importance, both for 

practical and for fundamental applications, to study collision energy effects as a function of 

precursor ion size. However, only few systematic studies concerning the quantitative relationship 

between collision energy and DoF are reported in literature17-22. The relation between fragmentation 

energetics and molecular size for different type of polymers: poly-ethylene glycols (PEG), poly-

tetrahydrofurane (PTHF) and peptides has been reported by Memboeuf et al.21,23. A good linear 

correlation between the Characteristic Collision Energy (CCE: the collision energy corresponding 

to a Survival Yield of 50 % 24-26) and the mass of the ion has been observed, independently of the 

type of instrument used. In particular, when the activation energy and entropy do not significantly 

depend on molecular mass (which is well satisfied for a given oligomer series) the linear correlation 

observed is excellent (R2> 0.996). On the other hand for peptides, which have a range of activation 

energies (and entropies), the correlation is less accurate (R2 =0.917)21. A good linear dependence of 

CCE with ion mass has been also found for singly and doubly lithiated polytetrahydrofuran 



(PTHF)23. A recent systematic study of various homopolymers confirmed the linear correlation 

between the characteristic collision energy (CCE) and the precursor ion mass for the investigated 

polymers. The slopes of the linear trendlines were, however significantly different for various 

homopolymers. The slope was found to decrease with the activation energy of dissociation, 

decreasing in the order of polyethers>polymethacrylates> polyesters > polysaccharides. This trend 

suggested that the slope of the CCE trendline is linearly proportional to the energy required for 

fragmentation. This also explains that cyclic structures have higher CCE values, due to the 

additional energy needed for the ring-opening27. 

All these investigations concerning the DoF effect on the fragmentation relate to compounds 

characterized by covalently bound repeating units. To the best of our knowledge, the DoF effect has 

not been studied for non-covalent aggregates. This may be of interest for various organic or 

inorganic clusters, and also for biomolecular complexes. To shed some light on this subject, we 

decided to investigate the DoF dependence of the CCE of singly charged aggregates of amphiphilic 

substances as sodium methanesulfonate (MetSO3Na), sodium n-butanesulfonate (ButSO3Na) and 

sodium n-octanesulfonate(OctSO3Na) (Figure 1).  

These species have been selected as typical representatives of non-covalent aggregate forming 

substances28, more simple, but structurally similar to the surfactant sodium 

bis(ethylhexyl)sulfosuccinate (AOT). AOT aggregates have been observed under ESI29-34 FAB35, 

MALDI36, and ToF-SIMS37 conditions both as positive and negative  ions. Self-assembling sodiated 

AOT aggregates in vacuo has also been investigated by molecular dynamics simulation38,39. The 

structurally similar, but more simple amphiphilic MetSO3Na, ButSO3Na and OctSO3Na compounds 

form analogous positively and negatively charged aggregates under ESI conditions31,33. This 

observation, together with theoretical studies40 suggests that the aggregation process is determined 

mainly by electrostatic interactions among head groups while the chain has little influence.  

 

Please insert here Figure 1 

 

Experimental section 

Methanesulfonic acid Sodium salt, MetSO3Na, (≥ 98%), Butanesulfonic acid Sodium salt, 

ButSO3Na (≥ 95%), 1-Octanesulfonic acid sodium salt OctSO3Na (approx 98%) were purchased 

from Sigma- Aldrich (Germany). Solvents used were LC-MS grade from Sigma- Aldrich 

(Germany). 



Q-Tof experiments were carried out using a quadrupole-time of flight high resolution LC/MS 

system (Waters q-Tof Premier, Manchester, UK), which was equipped with an electrospray source 

(ESI). 

In all the ESI MS and ESI MS/MS experiments the following common operating conditions were 

chosen: capillary voltage 3.5 kV in ESI (+) and 3 KV in ESI (-), sampling cone voltage: 60 V, 

extraction cone voltage: 3.2 V, ion guide: 1.2 V, source temperature 90 °C, desolvation temperature 

250 °C, cone gas flow 50 l hr-1, desolvation gas flow 300 l hr-1 mass range 50-1000 m/z and 

collision gas: Argon. 

The ESI-MS experiments were performed in positive and negative ion mode using 0.5 mM 

solutions of each  compound in water/methanol (1:1) that were infused at 10 l min-1 flow rate. ESI 

MS/MS measurements were performed using the same sample solutions which were introduced 

directly into ESI source at 15 l min-1 flow rate. 

The mix solutions of hetero-oligomers (MetSO3Na, ButSO3Na, OctSO3Na) were prepared using 

equimolecular starting solutions of each compound at a concentration 0.5mM in water/methanol 

(1:1). 

Leucine-Enkephalin solution has been prepared using a water/acetonitrile  (0,1% formic acid) 

solvent mixture at a concentration of 1mg ml-1. Poly(ethylene glycol) samples with average 

molecular weights varying from 400 up to 1000 Da, were used, at a 50 µM concentration in 

methanol (MeOH) saturated with lithium bromide. 

The Survival Yield curves for each analyte were obtained using the same experimental procedure 

used for ESI MS/MS experiments, except the collision energies that were changed by discrete 

values ranging from 5 V to 115 V during the flow injection experiments. For each collision energy 

an acquisition time of 1 minute was set. Each ESI MS/MS spectrum was obtained by the average of 

11 consecutive scans. The percent of each fragment was calculated dividing the counts of the 

correspondent peak to the sum of counts of all peaks including the precursor ion.  

Experimental conditions were maintained constant through the complete set of measurements and 

each SY curve of positively and negatively singly charged aggregates was repeated 3 times. 

 

Results and discussion 

Within the investigated collision energy window, fragmentation of the selected non-covalent 

aggregates proceeds through consecutive and competitive losses of monomers and/or n-mers. This 

was established trough a careful analysis of the breakdown curves of parent daughter ions.31 There 

are practically no fragmentations involving cleavage of covalent bonds31,33. Fragmentation 

efficiency can be described by the SY function defined according to the equation 1: 



 

SY 
IM

IM  IF
    eq.1  

 

where IM is the intensity of the ionized molecule and ∑IF is the sum of all fragment ions intensities.  

The SY values vs. the collision energy (CE) have been plotted for the singly charged non covalently 

bounded homo-oligomers of MetSO3Na, ButSO3Na, OctSO3Na and of the hetero-oligomers of 

MetSO3Na-ButSO3Na, ButSO3Na-OctSO3Na, MetSO3Na-OctSO3Na. Graphs have been plotted for 

both positively and negatively charged supramolecular aggregates. Collision energy dependent 

fragmentation of altogether 55 clusters have been studied, including the following species: 

[(MetSO3)nNan+1]
+, [(ButSO3)nNan+1]

+, [(OctSO3)nNan+1]
+, [(MetSO3)n (ButSO3)m Na (n+m)+1]

+, 

[(MetSO3)n (OctSO3)m Na (n+ m)+1]
+, [(ButSO3)n (OctSO3)m Na(n+ m)+1]

+ in positive ion mode and 

[(MetSO3)nNan-1]
-, [(ButSO3)nNan-1]

-, [(OctSO3)nNan-1]
-, [(MetSO3)n (ButSO3)m Na (n+m)-1]

-, 

[(MetSO3)n (OctSO3)m Na (n+ m)-1]
-, [(ButSO3)n (OctSO3)m Na (n+ m)-1]

- in negative ion mode (with 

n+m =6). For positive ions the results cover homo-oligomers with aggregation number (n) ranging 

from 2 to 10 for MetSO3Na, ButSO3Na, OctSO3Na, while in negative ion mode homo-aggregates of 

MetSO3Na and OctSO3Na with n = 3-10, and ButSO3Na  with n = 3 - 7 were observed.  For hetero-

oligomers the n+m value ranges from 2 to 6 both in positive and in negative ion mode.  

The intensity of the precursor ion, and consequently the SY value, decreases with the collision 

energy applied. Results for butanesulfonate clusters (n= 3-5) in positive and negative ion mode are 

shown in Figure 2. The shapes of SY curves as a function of collision energy can be well described 

by a sigmoid function. Figure 2 shows that the SY curves are shifted to higher collision voltage 

when the number of monomeric units is increased. This trend is closely analogous to that observed 

for covalently bound oligomers21,23,27.  

 

Please insert here Figure 2 

 

To compare the behavior of different species (by type and number of monomers) we evaluated their 

Characteristic Collision Energy (CCE) values. First of all reproducibility of Q-ToF measurements 

was assessed. In order to determine repeatability, the SY curves of the OctSO3Na trimer were 

measured in succession 10 times, both in positive and in negative ion mode. To verify interday 

reproducibility the octanesulfonate trimer was measured at six different dates; in each case 

measuring the full SY curve and determining the CCE value. The results show that repeatability 

(Relative Standard Deviation, RSD) of the CCE value was 4.2% in intraday experiments and 7.8% 



in interday ones, both in positive and negative ion mode. To avoid systematic errors, SY curves 

were acquired for each compound alternatively at low mass and high mass (e.g. SY of  OctSO3Na 

with n =2 followed by OctSO3Na with n=6, then  OctSO3Na with n=3 etc.).  

The CCE values of all studied homo- and hetero-aggregates, both in positive and negative ion mode 

are shown in Figure 3 as a function of the degrees-of-freedom (DoF) covering a wide mass range 

form ca. 100 to 2100 Da. The number of DoF has been calculated by equation 2: 

 

     eq. 2 

 

were n is the number of atoms constituting the whole aggregate. 

This mass range corresponds to 50-900 DoF. The CCE values as a function of DoF for all positively 

charged aggregates can be well described by a single linear trendline, characterized by a good linear 

fit (R2>0.95). It is worthwhile that the CCE values depends only on size (DoF). This implies that 

clusters with same DoF but with different composition and aggregation number share the same 

CCE. A similar trend with a somewhat lower slope is observed for negatively charged aggregates 

(Figure 3).  

 

Please insert here Figure 3 

 

The present results on clusters  may be compared to the behaviour of poly ethylene glycols (PEGs), 

shown in Figure 4. This shows data on PEGs both measured in this study (triangles) and taken from 

the literature (filled circles21). Both data sets show a similar trendline and are numerically nearly 

superimposable. Note, the instrument in the present work was tuned according to standard 

procedures, and not to scale the present results to those in the literature. This may suggest that 

similar type instruments with roughly similar experimental conditions, yield a similar degree of 

excitation (tandem mass spectra) under conventional tuning in different laboratories. As a further 

comparison, CCE of leucine-enkephalin has also been measured, and is shown in Figure 4.  

 

Please insert here Figure 4 

 

It has been reported before21,23,27 that the linear trendline suggests that the studied series of 

compounds are all characterized by the same activation energy; and that the slope of the CCE vs. 

DoF (or molecular mass) trendline closely relates to the activation energy of a series of oligomers. 

This may be expressed in a different way; that for two compounds having the same mass (or DoF) 



and the same charge state, a difference in CCE values represents a difference in activation 

energies.In the present case the CCE value of protonated leucine-enkephalin practically overlaps 

with those of the studied clusters having the same DoF, suggesting that the respective activation 

energies are similar. The activation energy of the lowest energy fragmentation channel of leucine-

enkephalin is 1.2 eV (ranging from 1.1441 to 1.6642 with average value of 1.2 eV43); this suggests 

that the activation energy of fragmentation for the studied clusters is similar, in the order of 1.2 eV 

(positively charged clusters) and 1.0 eV (negatively charged clusters). 

Comparing the slopes of the trendlines in Figure 4 indicates that the slope for the studied clusters is 

much less than that of PEGs (by approximately a factor of 3 times); and it is also known that 

fragmentation of PEGs requires approximately 2.2-2.8 eV21 activation energy. In qualitative terms 

this well corresponds to the result based on comparison with leucine-enkephalin: the clusters have a 

much lower activation energy than those of PEGs. The slope for positive clusters is about 20% 

higher than that of negative clusters, indicating that positive clusters have higher stability. This well 

corresponds to relative ion stabilities of these aggregates indicated by both experimental33 and 

theorethical (molecular dynamics simulations38) data. Note that the intercept of the lines are not 

exacly zero, usually a small positive value. Its explanation and physical relevance is unknown. 

 

Conclusions 

The experimental data show a linear correlation between the Characteristic Collision Energy (CCE) 

and the DoF of various non-covalent clusters of surfactants. This behavior is analogous to that 

observed for various synthetic oligomers, suggesting that the average activation energy (more 

accurately activation Gibbs energy) of fragmentation does not change with cluster size (i.e. is 

independent of n). The analogy also implies that fragmentation of covalent molecules and non-

covalent clusters follows the same scale law, even though in one case bond cleavage, in the other 

separation of non-covalent clusters take place. It is most tempting to rationalize it by fast 

randomization of internal energy both in covalent and non-covalent species. These observations are 

in-line with previous findings based on Infrared Multi-Photon Dissociation (IRMPD) experiments39, 

which also suggest fast spread of energy among vibrational degrees of freedom in non covalent 

surfactant aggregates.  

 

The slopes of the trendlines characterizing cluster fragmentation are much smaller than those of 

PEGs – this suggests that the corresponding activation energies are also much smaller than those 

characterizing PEGs (ca. 2.5 eV21). In agreement with this observation, comparison with a well-

studied peptide, leucine-enkephalin suggests that its activation energy (1.2 eV43) is very close to 



that of surfactant clusters. Positive clusters show a slightly higher slope than negative clusters, 

suggesting a 10-20% higher activation energy. These results are in good agreement with 

expectations of theoretical studies44.  
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Figure captions: 

Figure 1: Structures of sodium methanesulfonate (MetSO3Na), sodium buthanesulfonate 

(ButSO3Na), sodium octanesulfonate (OctSO3Na).  

Figure 2: SY curves of ButSO3Na singly charged 3-mer, 4-mer, 5-mer A) in positive ion mode and 

B) in negative ion mode. 

Figure 3: CCE  as function of the DoF for positive (▲) and negative (■) alkanesulfonate 

aggregates. All compounds are singly charged. Trendlines (with slope and correlation coefficient) 

are also shown.   
Figure 4: CCE values of lithiated PEGs taken from  ref 21 (●), of lithiated PEGs obtained in the 

present work (▲),  of Leucine-enkephalin measured in the present work (X), and  of positive (○) 

and negative (□) alkanesulfonate clusters.  

 

 


