36 research outputs found

    Cell sheet as a bioink for 3D bioprinting

    Get PDF
    Cell sheet technology is a growing area in tissue engineering. It enables a sheet of interconnected cells which is enriched with cell-extracellular matrix (ECM) and cell-cell interactions. Poly (N-isopropylacrylamide) (PNIPAm) coating based thermoresponsive culture dishes are used as one of the advanced cell sheet technology methods [1]. It allows the surface to demonstrate temperature responsive wettability changes in aqueous environments. Different methods can be used to fabricate PNIPAm surfaces such as initiated chemical vapor deposition (iCVD) which offers a control of the polymer thickness [2]. In this research, we showed that thermoresponsive surfaces can create cell sheet which can be used as a bioink in 3D direct cell bioprinting [3]. The aim of this work is to show that cell sheets can be used to increase mechanical strength of bioink

    Comparison of Rumen and Manure Microbiomes and Implications for the Inoculation of Anaerobic Digesters

    No full text
    Cattle manure is frequently used as an inoculum for the start-up of agricultural biogas plants or as a co-substrate in the anaerobic digestion of lignocellulosic feedstock. Ruminal microbiota are considered to be effective plant fiber degraders, but the microbes contained in manure do not necessarily reflect the rumen microbiome. The aim of this study was to compare the microbial community composition of cow rumen and manure with respect to plant fiber-digesting microbes. Bacterial and methanogenic communities of rumen and manure samples were examined by 454 amplicon sequencing of bacterial 16S rRNA genes and mcrA genes, respectively. Rumen fluid samples were dominated by Prevotellaceae (29%), whereas Ruminococcaceae was the most abundant family in the manure samples (31%). Fibrobacteraceae (12%) and Bacteroidaceae (13%) were the second most abundant families in rumen fluid and manure, respectively. The high abundances of fiber-degrading bacteria belonging to Prevotellaceae and Fibrobacteraceae might explain the better performance of anaerobic digesters inoculated with rumen fluid. Members of the genus Methanobrevibacter were the predominant methanogens in the rumen fluid, whereas methanogenic communities of the manure samples were dominated by the candidate genus Methanoplasma. Our results suggest that inoculation or bioaugmentation with fiber-digesting rumen microbiota can enhance the anaerobic digestion of lignocellulosic biomass

    CVD of polymeric thin films: applications in sensors, biotechnology, microelectronics/organic electronics, microfluidics, MEMS, composites and membranes

    No full text
    Polymers with their tunable functionalities offer the ability to rationally design micro- and nano-engineered materials. Their synthesis as thin films have significant advantages due to the reduced amounts of materials used, faster processing times and the ability to modify the surface while preserving the structural properties of the bulk. Furthermore, their low cost, ease of fabrication and the ability to be easily integrated into processing lines, make them attractive alternatives to their inorganic thin film counterparts. Chemical vapor deposition (CVD) as a polymer thin-film deposition technique offers a versatile platform for fabrication of a wide range of polymer thin films preserving all the functionalities. Solventless, vapor-phase deposition enable the integration of polymer thin films or nanostructures into micro- and nanodevices for improved performance. In this review, CVD of functional polymer thin films and the polymerization mechanisms are introduced. The properties of the polymer thin films that determine their behavior are discussed and their technological advances and applications are reviewed

    A facile method for fabrication of responsive micropatterned surfaces

    No full text
    Responsive micropatterned surfaces are fabricated using a facile, one-step method that allows for the separate control of topography and surface chemistry. Temperature responsive poly(N-isopropylacrylamide) (pNIPAAm), and amphiphilic poly(hydroxyethyl methacrylate-co-perfluorodecylacrylate) (p(HEMA-co-PFA)) polymer thin films are deposited on prestrained polydimethylsiloxane (PDMS) substrates using the initiated chemical vapor deposition (iCVD) technique. Subsequent release of the strain results in the formation of periodic wrinkle structures on the surface of polymer thin films. The iCVD technique allows control of the chemical composition while preserving the functional groups of the polymers intact. Surface topography is controlled separately by tuning elastic modulus of the polymer coatings and substrates. Highly ordered, well-defined wrinkle structures are obtained on pNIPAAm surfaces whereas wrinkles on the amphiphilic surfaces are less ordered due to the difference in elastic moduli of the polymers. Furthermore, process temperature is observed to have detrimental effects on the ordering of the wrinkles

    Microbial community shifts in the oxic-settling-anoxic process in response to changes to sludge interchange ratio

    No full text
    This particular study set out to demonstrate alterations on the microbial community of the oxic-settling-anaerobic/anoxic (OSA) process treating real domestic wastewater by changing interchange ratios (IRs). The sludge yield of systems operated at different IRs (1/13, 1/17 and 1/20) to assess sludge reduction was used to analyze microbial community composition variations. The highest IR (1/13) resulted in the highest sludge reduction (52.1%), while the OSA systems with IR of 1/17 and 1/20 reduced sludge production by 37.4% and 35.5%, respectively, in comparison to conventional systems. 16S rRNA gene amplicon sequencing analysis showed that the bacterial communities were composed of similar phylogenetic groups, Proteobacteria, Acidobacteria, and Bacteroidetes being dominant. The relative abundances differed due to the applied IRs. The highest abundance of Actinobacteria was determined at the highest IR (1/13) and increasing of the HRT to 1/20 caused a significant reduction in Actinobacteria species and the lowest abundance (6%) was determined in the OSA systems. The abundant of Thiothrix species that are boosted in the OSA trials may have a vital role in OSA systems, where its abundance was below the detection limits in the seed sludge sample. Therefore, they could be used as bioindicators in the OSA system

    Initiated chemical vapor deposition and light-responsive cross-linking of poly(vinyl cinnamate) thin films

    No full text
    The first vapor-phase deposition of poly(vinyl cinnamate) (PVCin) is reported. Initiated chemical vapor deposition (iCVD) is used to synthesize PVCin thin films with an average thickness of 100 nm. Free radical polymerization and cyclization reactions compete during the deposition process, with approximately 45% of the repeat units under-going cyclization. Exposure to UV light (lambda = 254 nm) induces dimerization (cross-linking) of the PVCin, which is quantified using spectroscopic techniques. Approximately 90% of the free cinnamate moieties are dimerized at a UV dose of 300 mJ cm(-2). PVCin is also incorporated into a copolymer with N-isopropylacrylamide, which exhibits a characteristic change in hydrophilicity with temperature. The copolymer is selectively cross-linked through a mask, and reversible swelling of patterns with 30 m resolution is demonstrated by submerging the film in water

    Surface-tethered zwitterionic ultrathin antifouling coatings on reverse osmosis membranes by initiated chemical vapor deposition

    No full text
    Poly[2-(dimethylamino)ethyl methacrylate-co-ethylene glycol dimethacry late] (PDE) thin films were synthesized via initiated chemical vapor deposition (iCVD) and reacted with 1,3-propane sultone to obtain the zwitterionic structure. The cross-linker ethylene glycol dimethacrylate (EGDMA) was utilized to make the copolymer insoluble in water. The composition of the copolymer was tuned by varying the flow rates of precursors and calculated from Fourier transform infrared spectroscopy (FTIR) spectra. The zwitterionic coatings were covalently grafted on to reverse osmosis (RO) membranes, and surface characterizations were carried out. Scanning electron microscope (SEM) and atomic force microscope (AFM) revealed that the iCVD zwitterionic coatings were conformal and smooth over the RO membrane, and the coating thickness can be measured by using ellipsometry. Salt rejection was not impaired by the coating. Permeation tests were carried out under different feed pressures, film thicknesses, and film compositions, showing a 15% to 43% reduction in permeation. Cell adhesion tests were carried out using Escherichia coli, and the coated RO membranes showed superior antifouling performance compared with the bare RO membrane. This is the first time that the library of iCVD functional groups has been extended to charged zwitterionic moieties, and the zwitterionic coatings have been applied on delicate substrates, such as RO membranes
    corecore