22 research outputs found

    Increased frontal brain activation during walking while dual tasking: an fNIRS study in healthy young adults

    Get PDF
    Background: Accumulating evidence suggests that gait is influenced by higher order cognitive and cortical control mechanisms. Recently, several studies used functional near infrared spectroscopy (fNIRS) to examine brain activity during walking, demonstrating increased oxygenated hemoglobin (HbO2) levels in the frontal cortex during walking while subjects completed a verbal cognitive task. It is, however, still unclear whether this increase in activation was related to verbalization, if the response was specific to gait, or if it would also be observed during standing, a different motor control task. The aim of this study was to investigate whether an increase in frontal activation is specific to dual tasking during walking. Methods: Twenty-three healthy young adults (mean 30.9 ± 3.7 yrs, 13 females) were assessed using an electronic walkway. Frontal brain activation was assessed using an fNIRS system consisting of two probes placed on the forehead of the subjects. Assessments included: walking in a self-selected speed; walking while counting forward; walking while serially subtracting 7s (Walking+S7); and standing while serially subtracting 7s (Standing+S7). Data was collected from 5 walks of 30 meters in each condition. Twenty seconds of quiet standing before each walk served as baseline frontal lobe activity. Repeated Measures Analysis of Variance (RM ANOVA) tested for differences between the conditions. Results: Significant differences were observed in HbO2 levels between all conditions (p = 0.007). HbO2 levels appeared to be graded; walking alone demonstrated the lowest levels of HbO2 followed by walking+counting condition (p = 0.03) followed by Walking+S7 condition significantly increased compared to the two other walking conditions (p < 0.01). No significant differences in HbO2 levels were observed between usual walking and the standing condition (p = 0.38) or between standing with or without serial subtraction (p = 0.76). Conclusions: This study provides direct evidence that dual tasking during walking is associated with frontal brain activation in healthy young adults. The observed changes are apparently not a response to the verbalization of words and are related to the cognitive load during gait

    Treadmill training in Parkinson's disease is underpinned by the interregional connectivity in cortical-subcortical network

    Get PDF
    Treadmill training (TT) has been extensively used as an intervention to improve gait and mobility in patients with Parkinson’s disease (PD). Regional and global effects on brain activity could be induced through TT. Training effects can lead to a beneficial shift of interregional connectivity towards a physiological range. The current work investigates the effects of TT on brain activity and connectivity during walking and at rest by using both functional near-infrared spectroscopy and functional magnetic resonance imaging. Nineteen PD patients (74.0 ± 6.59 years, 13 males, disease duration 10.45 ± 6.83 years) before and after 6 weeks of TT, along with 19 age-matched healthy controls were assessed. Interregional effective connectivity (EC) between cortical and subcortical regions were assessed and its interrelation to prefrontal cortex (PFC) activity. Support vector regression (SVR) on the resting-state ECs was used to predict prefrontal connectivity. In response to TT, EC analysis indicated modifications in the patients with PD towards the level of healthy controls during walking and at rest. SVR revealed cerebellum related connectivity patterns that were associated with the training effect on PFC. These findings suggest that the potential therapeutic effect of training on brain activity may be facilitated via changes in compensatory modulation of the cerebellar interregional connectivity

    Cognitive Involvement in Balance, Gait and Dual-Tasking in Aging: A Focused Review From a Neuroscience of Aging Perspective

    Get PDF
    A substantial corpus of evidence suggests that the cognitive involvement in postural control and gait increases with aging. A large portion of such studies were based on dual-task experimental designs, which typically use the simultaneous performance of a motor task (e.g., static or dynamic balancing, walking) and a continuous cognitive task (e.g., mental arithmetic, tone detection). This focused review takes a cognitive neuroscience of aging perspective in interpreting cognitive motor dual-task findings. Specifically, we consider the importance of identifying the neural circuits that are engaged by the cognitive task in relation to those that are engaged during motor task performance. Following the principle of neural overlap, dual-task interference should be greatest when the cognitive and motor tasks engage the same neural circuits. Moreover, the literature on brain aging in general, and models of dedifferentiation and compensation, in particular, suggest that in cognitive motor dual-task performance, the cognitive task engages different neural substrates in young as compared to older adults. Also considered is the concept of multisensory aging, and the degree to which the age-related decline of other systems (e.g., vision, hearing) contribute to cognitive load. Finally, we discuss recent work on focused cognitive training, exercise and multimodal training of older adults and their effects on postural and gait outcomes. In keeping with the principle of neural overlap, the available cognitive training research suggests that targeting processes such as dividing attention and inhibition lead to improved balance and gait in older adults. However, more studies are needed that include functional neuroimaging during actual, upright performance of gait and balance tasks, in order to directly test the principle of neural overlap, and to better optimize the design of intervention studies to improve gait and posture

    A consensus guide to using functional near-infrared spectroscopy in posture and gait research

    Get PDF
    BACKGROUND: Functional near-infrared spectroscopy (fNIRS) is increasingly used in the field of posture and gait to investigate patterns of cortical brain activation while people move freely. fNIRS methods, analysis and reporting of data vary greatly across studies which in turn can limit the replication of research, interpretation of findings and comparison across works. RESEARCH QUESTION AND METHODS: Considering these issues, we propose a set of practical recommendations for the conduct and reporting of fNIRS studies in posture and gait, acknowledging specific challenges related to clinical groups with posture and gait disorders. RESULTS: Our paper is organized around three main sections: 1) hardware set up and study protocols, 2) artefact removal and data processing and, 3) outcome measures, validity and reliability; it is supplemented with a detailed checklist. SIGNIFICANCE: This paper was written by a core group of members of the International Society for Posture and Gait Research and posture and gait researchers, all experienced in fNIRS research, with the intent of assisting the research community to lead innovative and impactful fNIRS studies in the field of posture and gait, whilst ensuring standardization of research

    Cognitive Involvement in Balance, Gait and Dual-Tasking in Aging: A Focused Review From a Neuroscience of Aging Perspective

    Get PDF
    A substantial corpus of evidence suggests that the cognitive involvement in postural control and gait increases with aging. A large portion of such studies were based on dual-task experimental designs, which typically use the simultaneous performance of a motor task (e.g., static or dynamic balancing, walking) and a continuous cognitive task (e.g., mental arithmetic, tone detection). This focused review takes a cognitive neuroscience of aging perspective in interpreting cognitive motor dual-task findings. Specifically, we consider the importance of identifying the neural circuits that are engaged by the cognitive task in relation to those that are engaged during motor task performance. Following the principle of neural overlap, dual-task interference should be greatest when the cognitive and motor tasks engage the same neural circuits. Moreover, the literature on brain aging in general, and models of dedifferentiation and compensation, in particular, suggest that in cognitive motor dual-task performance, the cognitive task engages different neural substrates in young as compared to older adults. Also considered is the concept of multisensory aging, and the degree to which the age-related decline of other systems (e.g., vision, hearing) contribute to cognitive load. Finally, we discuss recent work on focused cognitive training, exercise and multimodal training of older adults and their effects on postural and gait outcomes. In keeping with the principle of neural overlap, the available cognitive training research suggests that targeting processes such as dividing attention and inhibition lead to improved balance and gait in older adults. However, more studies are needed that include functional neuroimaging during actual, upright performance of gait and balance tasks, in order to directly test the principle of neural overlap, and to better optimize the design of intervention studies to improve gait and posture

    Paroxysmal Slow-Wave Events Are Uncommon in Parkinson’s Disease

    No full text
    Background: Parkinson’s disease (PD) is currently considered to be a multisystem neurodegenerative disease that involves cognitive alterations. EEG slowing has been associated with cognitive decline in various neurological diseases, such as PD, Alzheimer’s disease (AD), and epilepsy, indicating cortical involvement. A novel method revealed that this EEG slowing is composed of paroxysmal slow-wave events (PSWE) in AD and epilepsy, but in PD it has not been tested yet. Therefore, this study aimed to examine the presence of PSWE in PD as a biomarker for cortical involvement. Methods: 31 PD patients, 28 healthy controls, and 18 juvenile myoclonic epilepsy (JME) patients (served as positive control), underwent four minutes of resting-state EEG. Spectral analyses were performed to identify PSWEs in nine brain regions. Mixed-model analysis was used to compare between groups and brain regions. The correlation between PSWEs and PD duration was examined using Spearman’s test. Results: No significant differences in the number of PSWEs were observed between PD patients and controls (p > 0.478) in all brain regions. In contrast, JME patients showed a higher number of PSWEs than healthy controls in specific brain regions (p < 0.023). Specifically in the PD group, we found that a higher number of PSWEs correlated with longer disease duration. Conclusions: This study is the first to examine the temporal characteristics of EEG slowing in PD by measuring the occurrence of PSWEs. Our findings indicate that PD patients who are cognitively intact do not have electrographic manifestations of cortical involvement. However, the correlation between PSWEs and disease duration may support future studies of repeated EEG recordings along the disease course to detect early signs of cortical involvement in PD

    EEG-Based Mapping of Resting-State Functional Brain Networks in Patients with Parkinson&rsquo;s Disease

    Get PDF
    (1) Background: Directed functional connectivity (DFC) alterations within brain networks are described using fMRI. EEG has been scarcely used. We aimed to explore changes in DFC in the sensory-motor network (SMN), ventral-attention network (VAN), dorsal-attention network (DAN), and central-executive network (CEN) using an EEG-based mapping between PD patients and healthy controls (HCs). (2) Methods: Four-minutes resting EEG was recorded from 29 PD patients and 28 HCs. Network&rsquo;s hubs were defined using fMRI-based binary masks and their electrical activity was calculated using the LORETA. DFC between each network&rsquo;s hub-pairs was calculated for theta, alpha and beta bands using temporal partial directed coherence (tPDC). (3) Results: tPDCs percent was lower in the CEN and DAN in PD patients compared to HCs, while no differences were observed in the SMN and VAN (group*network: F = 5.943, p &lt; 0.001) in all bands (group*band: F = 0.914, p = 0.401). However, in the VAN, PD patients showed greater tPDCs strength compared to HCs (p &lt; 0.001). (4) Conclusions: Our results demonstrated reduced connectivity in the CEN and DAN, and increased connectivity in the VAN in PD patients. These results indicate a complex pattern of DFC alteration within major brain networks, reflecting the co-occurrence of impairment and compensatory mechanisms processes taking place in PD

    Table_2_Effects of aging on cognitive and brain inter-network integration patterns underlying usual and dual-task gait performance.docx

    No full text
    IntroductionAging affects the interplay between cognition and gait performance. Neuroimaging studies reported associations between gait performance and structural measures; however, functional connectivity (FC) analysis of imaging data can help to identify dynamic neural mechanisms underlying optimal performance. Here, we investigated the effects on divergent cognitive and inter-network FC patterns underlying gait performance during usual (UW) and dual-task (DT) walking.MethodsA total of 115 community-dwelling, healthy participants between 20 and 80 years were enrolled. All participants underwent comprehensive cognitive and gait assessments in two conditions and resting state functional MRI (fMRI) scans. Inter-network FC from motor-related to 6 primary cognitive networks were estimated. Step-wise regression models tested the relationships between gait parameters, inter-network FC, neuropsychological scores, and demographic variables. A threshold of p ResultsUW was largely associated with FC levels between motor and sustained attention networks. DT performance was associated with inter-network FC between motor and divided attention, and processing speed in the overall group. In young adults, UW was associated with inter-network FC between motor and sustained attention networks. On the other hand, DT performance was associated with cognitive performance, as well as inter-network connectivity between motor and divided attention networks (VAN and SAL). In contrast, the older age group (> 65 years) showed increased integration between motor, dorsal, and ventral attention, as well as default-mode networks, which was negatively associated with UW gait performance. Inverse associations between motor and sustained attention inter-network connectivity and DT performance were observed.ConclusionWhile UW relies on inter-network FC between motor and sustained attention networks, DT performance relies on additional cognitive capacities, increased motor, and executive control network integration. FC analyses demonstrate that the decline in cognitive performance with aging leads to the reliance on additional neural resources to maintain routine walking tasks.</p
    corecore