4 research outputs found

    Histomorphometric evaluation of strontium-containing nanostructured hydroxyapatite as bone substitute in sheep

    No full text
    Abstract The aim of this study is to evaluate the biocompatibility and osteoconductivity in surgical defects of sheep tibias filled with 1% strontium-containing nanostructured hydroxyapatite microspheres (SrHA), stoichiometric hydroxyapatite without strontium microspheres (HA), or blood clots. Santa Ines sheep were subjected to three perforations on the medial side of the left tibia. The biomaterials were characterized by X-ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) before implantation and by X-Ray Microfluorescence (µFRX) and Scanning Electron Microscopy (SEM) after sheep tibias implantation. Surgical defects were filled with blood clots (control), SrHA (Group 1) or HA (Group 2). After 30 days, 5-µm bone blocks were obtained for histological evaluation, and the blocks obtained from 1 animal were embedded in methylmethacrylate for undecalcified sections. Mononuclear inflammatory infiltrate remained mild in all experimental groups. Giant cells were observed surrounding biomaterials particles of both groups and areas of bone formation were detected in close contact with biomaterials. All groups showed newly formed bone from the periphery to the center of the defects, which the control, HA and SrHA presented 36.4% (± 21.8), 31.2% (± 14.7) and 26.2% (± 12.9) of newly formed bone density, respectively, not presenting statistical differences. In addition, the connective tissue density did not show any significant between groups. The SrHA showing a higher volume density of biomaterial (51.2 ± 14.1) present in the defect compared to HA (32.6 ± 8.5) after 30 days (p = 0.03). Microspheres containing 1% SrHA or HA can be considered biocompatible, have osteoconductive properties and may be useful biomaterials for clinical applications

    Late Adherent Human Bone Marrow Stromal Cells Form Bone and Restore the Hematopoietic Microenvironment In Vivo

    Get PDF
    Bone marrow stromal cells (BMSCs) are a valuable resource for skeletal regenerative medicine because of their osteogenic potential. In spite of the very general term “stem cell,” this population of cells is far from homogeneous, and different BMSCs clones have greatly different phenotypic properties and, therefore, potentially different therapeutic potential. Adherence to a culture flask surface is a primary defining characteristic of BMSCs. We hypothesized that based on the adherence time we could obtain an enriched population of cells with a greater therapeutic potential. We characterized two populations of bone marrow-derived cells, those that adhered by three days (R-cells) and those that did not adhere by three days but did by six days (L-cells). Clones derived from L-cells could be induced into adipogenic, chondrogenic, and osteogenic differentiation in vitro. L-cells appeared to have greater proliferative capacity, as manifested by larger colony diameter and clones with higher CD146 expression. Only clones from L-cells developed bone marrow stroma in vivo. We conclude that the use of late adherence of BMSCs is one parameter that can be used to enrich for cells that will constitute a superior final product for cell therapy in orthopedics
    corecore