9 research outputs found

    Montelukast medicines of today and tomorrow: from molecular pharmaceutics to technological formulations

    Get PDF
    Montelukast sodium is a leukotriene antagonist of growing interest as an alternative therapy for asthma across different age groups due to its bronchoprotective, anti-inflammatory and anti-allergic properties. Currently, montelukast is commercialized only in oral solid dosage forms, which are the favorite of adult patients but may pose challenges in administration to children of young age or patients suffering from dysphagia. This review presents a comprehensive revision of scientific reports and patents on emerging strategies for the delivery of montelukast. A common ground to these reports is the pursue of an enhanced montelukast performance, by increasing its bioavailability and physico-chemical stability. A wide variety of strategies can be found, from the formation of supramolecular adducts with cyclodextrins to encapsulation in nanoparticles and liposomes. The new dosage forms for montelukast are designed for non-enteric absorption, some for absorption in the oral cavity and another two being for local action in the nasal mucosa or in the pulmonary epithelium. The review describes the emerging delivery strategies to circumvent the current limitations to the use of montelukast that are expected to ultimately lead to the development of more patient-compliant dosage forms

    Measuring routine childhood vaccination coverage in 204 countries and territories, 1980-2019: a systematic analysis for the Global Burden of Disease Study 2020, Release 1

    Get PDF
    Background: Measuring routine childhood vaccination is crucial to inform global vaccine policies and programme implementation, and to track progress towards targets set by the Global Vaccine Action Plan (GVAP) and Immunization Agenda 2030. Robust estimates of routine vaccine coverage are needed to identify past successes and persistent vulnerabilities. Drawing from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2020, Release 1, we did a systematic analysis of global, regional, and national vaccine coverage trends using a statistical framework, by vaccine and over time. // Methods: For this analysis we collated 55 326 country-specific, cohort-specific, year-specific, vaccine-specific, and dose-specific observations of routine childhood vaccination coverage between 1980 and 2019. Using spatiotemporal Gaussian process regression, we produced location-specific and year-specific estimates of 11 routine childhood vaccine coverage indicators for 204 countries and territories from 1980 to 2019, adjusting for biases in country-reported data and reflecting reported stockouts and supply disruptions. We analysed global and regional trends in coverage and numbers of zero-dose children (defined as those who never received a diphtheria-tetanus-pertussis [DTP] vaccine dose), progress towards GVAP targets, and the relationship between vaccine coverage and sociodemographic development. // Findings: By 2019, global coverage of third-dose DTP (DTP3; 81·6% [95% uncertainty interval 80·4–82·7]) more than doubled from levels estimated in 1980 (39·9% [37·5–42·1]), as did global coverage of the first-dose measles-containing vaccine (MCV1; from 38·5% [35·4–41·3] in 1980 to 83·6% [82·3–84·8] in 2019). Third-dose polio vaccine (Pol3) coverage also increased, from 42·6% (41·4–44·1) in 1980 to 79·8% (78·4–81·1) in 2019, and global coverage of newer vaccines increased rapidly between 2000 and 2019. The global number of zero-dose children fell by nearly 75% between 1980 and 2019, from 56·8 million (52·6–60·9) to 14·5 million (13·4–15·9). However, over the past decade, global vaccine coverage broadly plateaued; 94 countries and territories recorded decreasing DTP3 coverage since 2010. Only 11 countries and territories were estimated to have reached the national GVAP target of at least 90% coverage for all assessed vaccines in 2019. // Interpretation: After achieving large gains in childhood vaccine coverage worldwide, in much of the world this progress was stalled or reversed from 2010 to 2019. These findings underscore the importance of revisiting routine immunisation strategies and programmatic approaches, recentring service delivery around equity and underserved populations. Strengthening vaccine data and monitoring systems is crucial to these pursuits, now and through to 2030, to ensure that all children have access to, and can benefit from, lifesaving vaccines

    Formation of Terrestrial Planets

    No full text
    The past decade has seen major progress in our understanding of terrestrial planet formation. Yet key questions remain. In this review we first address the growth of 100 km-scale planetesimals as a consequence of dust coagulation and concentration, with current models favoring the streaming instability. Planetesimals grow into Mars-sized (or larger) planetary embryos by a combination of pebble- and planetesimal accretion. Models for the final assembly of the inner Solar System must match constraints related to the terrestrial planets and asteroids including their orbital and compositional distributions and inferred growth timescales. Two current models -- the Grand-Tack and low-mass (or empty) primordial asteroid belt scenarios -- can each match the empirical constraints but both have key uncertainties that require further study. We present formation models for close-in super-Earths -- the closest current analogs to our own terrestrial planets despite their very different formation histories -- and for terrestrial exoplanets in gas giant systems. We explain why super-Earth systems cannot form in-situ but rather may be the result of inward gas-driven migration followed by the disruption of compact resonant chains. The Solar System is unlikely to have harbored an early system of super-Earths; rather, Jupiter's early formation may have blocked the ice giants' inward migration. Finally, we present a chain of events that may explain why our Solar System looks different than more than 99\% of exoplanet systems
    corecore