61 research outputs found

    Does bariatric surgery prior to total hip or knee arthroplasty reduce post-operative complications and improve clinical outcomes for obese patients? Systematic review and meta-analysis.

    Get PDF
    AIMS: Our aim was to determine whether, based on the current literature, bariatric surgery prior to total hip (THA) or total knee arthroplasty (TKA) reduces the complication rates and improves the outcome following arthroplasty in obese patients. METHODS: A systematic literature search was undertaken of published and unpublished databases on the 5 November 2015. All papers reporting studies comparing obese patients who had undergone bariatric surgery prior to arthroplasty, or not, were included. Each study was assessed using the Downs and Black appraisal tool. A meta-analysis of risk ratios (RR) and 95% confidence intervals (CI) was performed to determine the incidence of complications including wound infection, deep vein thrombosis (DVT), pulmonary embolism (PE), revision surgery and mortality. RESULTS: From 156 potential studies, five were considered to be eligible for inclusion in the study. A total of 23 348 patients (657 who had undergone bariatric surgery, 22 691 who had not) were analysed. The evidence-base was moderate in quality. There was no statistically significant difference in outcomes such as superficial wound infection (relative risk (RR) 1.88; 95% confidence interval (CI) 0.95 to 0.37), deep wound infection (RR 1.04; 95% CI 0.65 to 1.66), DVT (RR 0.57; 95% CI 0.13 to 2.44), PE (RR 0.51; 95% CI 0.03 to 8.26), revision surgery (RR 1.24; 95% CI 0.75 to 2.05) or mortality (RR 1.25; 95% CI 0.16 to 9.89) between the two groups. CONCLUSION: For most peri-operative outcomes, bariatric surgery prior to THA or TKA does not significantly reduce the complication rates or improve the clinical outcome. This study questions the previous belief that bariatric surgery prior to arthroplasty may improve the clinical outcomes for patients who are obese or morbidly obese. This finding is based on moderate quality evidence. Cite this article: Bone Joint J 2016;98-B:1160-6

    Acute partial Budd-Chiari syndrome and portal vein thrombosis in cytomegalovirus primary infection: a case report

    Get PDF
    BACKGROUND: Splanchnic vein thrombosis may complicate inherited thrombotic disorders. Acute cytomegalovirus infection is a rare cause of acquired venous thrombosis in the portal or mesenteric territory, but has never been described extending into a main hepatic vein. CASE PRESENTATION: A 36-year-old immunocompetent woman presented with acute primary cytomegalovirus infection in association with extensive thrombosis in the portal and splenic vein. In addition, a fresh thrombus was evident in the right hepatic vein. A thorough evaluation for a hypercoagulable state was negative. The clinical course, biological evolution, radiological and histological findings were consistent with cytomegalovirus hepatitis complicated by a partial acute Budd-Chiari syndrome and portal thrombosis. Therapeutic anticoagulation was associated with a slow clinical improvement and partial vascular recanalization. CONCLUSION: We described in details a new association between cytomegalovirus infection and acute venous thrombosis both in the portal vein and in the right hepatic vein, realizing a partial Budd-Chiari syndrome. One should be aware that this rare thrombotic event may be complicated by partial venous outflow block

    Epidemiology, Molecular Characterization and Antibiotic Resistance of Neisseria meningitidis from Patients ≤15 Years in Manhiça, Rural Mozambique

    Get PDF
    BACKGROUND: The epidemiology of meningococcal disease in Mozambique and other African countries located outside the "meningitis belt" remains widely unknown. With the event of upcoming vaccines microbiological and epidemiological information is urgently needed. METHODS: Prospective surveillance for invasive bacterial infections was conducted at the Manhiça District hospital (rural Mozambique) among hospitalized children below 15 years of age. Available Neisseria meningitidis isolates were serogrouped and characterized by Multilocus Sequence Typing (MLST). Antibiotic resistance was also determined. RESULTS: Between 1998 and 2008, sixty-three cases of confirmed meningococcal disease (36 meningitis, 26 sepsis and 1 conjunctivitis) were identified among hospitalized children. The average incidence rate of meningococcal disease was 11.6/100,000 (8/100,000 for meningitis and 3.7/100,000 for meningococcemia, respectively). There was a significant rise on the number of meningococcal disease cases in 2005-2006 that was sustained till the end of the surveillance period. Serogroup was determined for 43 of the 63 meningococcal disease cases: 38 serogroup W-135, 3 serogroup A and 2 serogroup Y. ST-11 was the most predominant sequence type and strongly associated with serogroup W-135. Two of the three serogroup A isolates were ST-1, and both serogroup Y isolates were ST-175. N. meningitidis remained highly susceptible to all antibiotics used for treatment in the country, although the presence of isolates presenting intermediate resistance to penicillin advocates for continued surveillance. CONCLUSIONS: Our data show a high rate of meningococcal disease in Manhiça, Mozambique, mainly caused by serogroup W-135 ST-11 strains, and advocates for the implementation of a vaccination strategy covering serogroup W-135 meningococci in the country

    Reactive Oxygen Species Production and Mitochondrial Dysfunction Contribute to Quercetin Induced Death in Leishmania amazonensis

    Get PDF
    BACKGROUND: Leishmaniasis, a parasitic disease caused by protozoa of the genus Leishmania, affects more than 12 million people worldwide. Quercetin has generated considerable interest as a pharmaceutical compound with a wide range of therapeutic activities. One such activity is exhibited against the bloodstream parasite Trypanosoma brucei and amastigotes of Leishmania donovani. However, the mechanism of protozoan action of quercetin has not been studied. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we report here the mechanism for the antileishmanial activity of quercetin against Leishmania amazonensis promastigotes. Quercetin inhibited L. amazonensis promastigote growth in a dose- and time- dependent manner beginning at 48 hours of treatment and with maximum growth inhibition observed at 96 hours. The IC(50) for quercetin at 48 hours was 31.4 µM. Quercetin increased ROS generation in a dose-dependent manner after 48 hours of treatment. The antioxidant GSH and NAC each significantly reduced quercetin-induced cell death. In addition, quercetin caused mitochondrial dysfunction due to collapse of mitochondrial membrane potential. CONCLUSIONS/SIGNIFICANCE: The effects of several drugs that interfere directly with mitochondrial physiology in parasites such as Leishmania have been described. The unique mitochondrial features of Leishmania make this organelle an ideal drug target while minimizing toxicity. Quercetin has been described as a pro-oxidant, generating ROS which are responsible for cell death in some cancer cells. Mitochondrial membrane potential loss can be brought about by ROS added directly in vitro or induced by chemical agents. Taken together, our results demonstrate that quercetin eventually exerts its antileishmanial effect on L. amazonensis promastigotes due to the generation of ROS and disrupted parasite mitochondrial function

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
    • …
    corecore