324 research outputs found

    Analog Self-Interference Cancellation With Practical RF Components for Full-Duplex Radios

    Get PDF
    One of the main obstacles in full-duplex radios is analog-to-digital converter (ADC) saturation on a receiver due to the strong self-interference (SI). To solve this issue, researchers have proposed two different types of analog self-interference cancellation (SIC) methods—i) passive suppression and ii) regeneration-and-subtraction of SI. For the latter case, the tunable RF component, such as a multi-tap circuit, reproduces and subtracts the SI. The resolutions of such RF components constitute the key factor of the analog SIC. Indeed, they are directly related to how well the SI is imitated. Another major issue in analog SIC is the inaccurate estimation of the SI channel due to the nonlinear distortions, which mainly come from the power amplifier (PA). In this paper, we derive a closed-form expression for the SIC performance of the multi-tap circuit; we consider how the RF components must overcome such practical impairments as digitally-controlled attenuators, phase shifters, and PA. For a realistic performance analysis, we exploit the measured PA characteristics and carry out a 3D ray-tracing-based, system-level throughput analysis. Our results confirm that the non-idealities of the RF components significantly affect the analog SIC performance. We believe our study provides insight into the design of the practical full-duplex system

    Newly developed post-operative atrial fibrillation is associated with an increased risk of late recurrence of atrial fibrillation in patients who underwent open heart surgery: Long-term follow up

    Get PDF
    Background: Herein is sought to determine whether the occurrence of post-operative atrial fibrillation (POAF) increases the risk of late recurrence of atrial fibrillation (AF) in patients undergoing open heart surgery (OHS). Methods: This study included 938 patients (56.7 ± 13.1 years old, 550 males) with no history of AF who underwent OHS. All patients were monitored continuously for development of POAF after surgery until the time of hospital discharge and received clinical follow up with serial evaluation of rhythm status. Results: Among the total population, POAF occurred in 207 (22.1%) patients and late AF in 88 (9.4%) patients during the mean follow up period of 78.1 ± 39.1 months. Development of late AF oc¬curred more frequently in patients with POAF than in those without [29.0% (60/207) vs. 3.8% (28/731), p < 0.01]. Higher septal E/e’ ratio (HR 1.04, 95% CI 1.00–1.08, p = 0.04) was an independent predic¬tor of late occurrence of AF and an episode of POAF (HR 27.12, 95% CI 8.46–86.96, p < 0.01) was the most powerful predictor. Conclusions: POAF is significantly associated with an increased risk of late AF recurrence during long-term follow up. Careful concern regarding late recurrence of AF with serial evaluation of rhythm status is required in patients with POAF

    A Compact Wideband Crossover Coupler with Lumped Elements

    Get PDF
    A compact wideband crossover coupler with fully lumped elements is presented. To achieve a wideband operation, a three-section branch-line structure is employed for the crossover coupler. The size is significantly minimized by replacing transmission lines with lumped elements. The measurement shows that the insertion loss, isolation, and return loss are 1.7 dB, 24 dB, and 14.5 dB, respectively, at 2 GHz. The fractional bandwidth of 20-dB isolation and 3-dB insertion loss is 27%. The size of the crossover coupler is 11 mm × 9 mm, which corresponds to 0.07λ × 0.06λ at 2 GHz. This is significantly smaller than a conventional three-section branch-line crossover coupler by 95%

    Influence of terahertz waves on the fiber direction of CFRP composite laminates

    Get PDF
    The importance of Carbon-fiber reinforced plastics (CFRP) are widely utilized due to more high performance in engineering structures. It was well known that a nondestructive technique would be very beneficial. A new terahertz radiation has been recognized for their importance in technological applications. Recently, T-ray (terahertz ray) advances of technology and instrumentation has provided a probing field on the electromagnetic spectrum. The THz-TDS can be considered as a useful tool using general non-conducting materials; however it is quite limited to conducting materials. In order to solve various material properties, the index of refraction (n) and the absorption coefficient (α) are derived in reflective and transmission configuration using the terahertz time domain spectroscopy. However, the T-ray is limited in order to penetrate a conducting material to some degree. Here, the T-ray would not go through easily the CFRP composite laminates since carbon fibers are electrically conducting while the epoxy matrix is not. So, investigation of terahertz time domain spectroscopy (THz TDS) was made and reflection and transmission configurations were studied for a 48-ply thermoplastic PPS (poly-phenylene sulfide)-based CFRP solid laminate. It is found that the electrical conductivity of CFRP composites depends on the direction of unidirectional fibers. Also, the T-ray could penetrate a CFRP composite laminate a few ply based on the E-filed (Electrical field) of carbon fibers. The terahertz scanning images were made at the angles ranged from 0° to 180° with respect to the nominal fiber axis. So, the images were mapped out based on the electrical field (E-field) direction in the CFRP solid laminates. Also, using two-dimensional spatial Fourier transform, interface C-scan images were transformed into quantitatively angular distribution plots to show the fiber orientation information therein and to predict the orientation of the ply

    Pharmacokinetics of Amitriptyline Demethylation;A Crossover Study with Single Doses of Amitriptyline and Nortriptyline

    Get PDF
    A single dose crossover pharmacokinetic study of amitriptyline and nortriptyline was done to find out the extent of first-pass metabolism to nortriptyline after amitripyline administration, and the contribution of nortriptyline during amitriptyline therapy. Six healthy male volunteers took part in this study and were given single doses (50 mg) of amitriptyline and nortriptyline at more than three-week intervals. Plasma concentrations of the drugs were measured up to 48 hours. Total area under the plasma concentration-time curve (AUe) of amitriptyline (744.6±258.4 ng/ml·hl was smaller than that of nortriptyline (l497.3±589.8 ng/ml'h), and the mean terminal half-life of amitriptyline (21.8±3.9 hr) was shorter than that of nortriptyline (36.8±5.9 h). The total area under the plasma concentration-time curve of nortriptyline produced by amitriptyline administration was 498.1 ±274.5 ng/ml·h, and the fraction produced by the first-pass of amitriptyline was 33.7 ± 10.5%. From this data, it can be estimated that the average nortriptyline concentration could be about 40% of the total tricyclic antidepressants present in the plasma of patients taking multiple amitriptyline therapy at steady state. About 34% of nortriptyline is produced by first- pass effect during gastrointestinal absorption of amitriptyline to systemic circulation resulting from N-demethylation of amitriptyline in the liver. Then, the rest of the nortriptyline is formed continuously at a rate proportional to the rate of amitriptyline elimination

    In-stent restenosis-prone coronary plaque composition: A retrospective virtual histology-intravascular ultrasound study

    Get PDF
      Background: The mechanism of in-stent restenosis (ISR) is multifactorial, which includes biological, mechanical and technical factors. This study hypothesized that increased inflammatory reaction, which is known to be an important atherosclerotic process, at a culprit lesion may lead to higher restenosis rates. Methods: The study population consisted of 241 patients who had undergone percutaneous coronary intervention with virtual histology-intravascular ultrasound (VH-IVUS) and a 9-month follow-up coronary angiography. Compared herein is the coronary plaque composition between patients with ISR and those without ISR. Results: Patients with ISR (n = 27) were likely to be older (66.2 ± 9.5 years vs. 58.7 ± 11.7 years, p = 0.002) and have higher levels of high-sensitivity C-reactive protein (hs-CRP, 1.60 ± 3.59 mg/dL vs. 0.31 ± 0.76 mg/dL, p &lt; 0.001) than those without ISR (n = 214). VH-IVUS examination showed that percent necrotic core volume (14.3 ± 8.7% vs. 19.5 ± 9.1%, p = 0.005) was higher in those without ISR than those with ISR. Multivariate analysis revealed that hs-CRP (odds ratio [OR] 3.334, 95% con­fidence interval [CI] 1.158–9.596, p = 0.026) and age (OR 3.557, 95% CI 1.242–10.192, p = 0.018) were associated with ISR. Conclusions: This study suggests that ISR is not associated with baseline coronary plaque composition but is associated with old age and increased expression of the inflammatory marker of hs-CRP. (Cardiol J 2018; 25, 1: 7–13

    Anti-Obesity and Anti-Adipogenic Effects of Chitosan Oligosaccharide (GO2KA1) in SD Rats and in 3T3-L1 Preadipocytes Models

    Get PDF
    Excess body weight is a major risk factor for type 2 diabetes (T2D) and associated metabolic complications, and weight loss has been shown to improve glycemic control and decrease morbidity and mortality in T2D patients. Weight-loss strategies using dietary interventions produce a significant decrease in diabetes-related metabolic disturbance. We have previously reported that the supplementation of low molecular chitosan oligosaccharide (GO2KA1) significantly inhibited blood glucose levels in both animals and humans. However, the effect of GO2KA1 on obesity still remains unclear. The aim of the study was to evaluate the anti-obesity effect of GO2KA1 on lipid accumulation and adipogenic gene expression using 3T3-L1 adipocytes in vitro and plasma lipid profiles using a Sprague-Dawley (SD) rat model. Murine 3T3-L1 preadipocytes were stimulated to differentiate under the adipogenic stimulation in the presence and absence of varying concentrations of GO2KA1. Adipocyte differentiation was confirmed by Oil Red O staining of lipids and the expression of adipogenic gene expression. Compared to control group, the cells treated with GO2KA1 significantly decreased in intracellular lipid accumulation with concomitant decreases in the expression of key transcription factors, peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (CEBP/α). Consistently, the mRNA expression of downstream adipogenic target genes such as fatty acid binding protein 4 (FABP4), fatty acid synthase (FAS), were significantly lower in the GO2KA1-treated group than in the control group. In vivo, male SD rats were fed a high fat diet (HFD) for 6 weeks to induced obesity, followed by oral administration of GO2KA1 at 0.1 g/kg/body weight or vehicle control in HFD. We assessed body weight, food intake, plasma lipids, levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) for liver function, and serum level of adiponectin, a marker for obesity-mediated metabolic syndrome. Compared to control group GO2KA1 significantly suppressed body weight gain (185.8 ± 8.8 g vs. 211.6 ± 20.1 g, p \u3c 0.05) with no significant difference in food intake. The serum total cholesterol, triglyceride, and low-density lipoprotein (LDL) levels were significantly lower in the GO2KA1-treated group than in the control group, whereas the high-density lipoprotein (HDL) level was higher in the GO2KA1 group. The GO2KA1-treated group also showed a significant reduction in ALT and AST levels compared to the control. Moreover, serum adiponectin levels were significantly 1.5-folder higher than the control group. These in vivo and in vitro findings suggest that dietary supplementation of GO2KA1 may prevent diet-induced weight gain and the anti-obesity effect is mediated in part by inhibiting adipogenesis and increasing adiponectin level

    Comparative proteomic analysis of early salt stress-responsive proteins in roots of SnRK2 transgenic rice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The rice roots are highly salt-sensitive organ and primary root growth is rapidly suppressed by salt stress. Sucrose nonfermenting 1-related protein kinase2 (SnRK2) family is one of the key regulator of hyper-osmotic stress signalling in various plant cells. To understand early salt response of rice roots and identify SnRK2 signaling components, proteome changes of transgenic rice roots over-expressing OSRK1, a rice SnRK2 kinase were investigated.</p> <p>Results</p> <p>Proteomes were analyzed by two-dimensional electrophoresis and protein spots were identified by LC-MS/MS from wild type and OSRK1 transgenic rice roots exposed to 150 mM NaCl for either 3 h or 7 h. Fifty two early salt -responsive protein spots were identified from wild type rice roots. The major up-regulated proteins were enzymes related to energy regulation, amino acid metabolism, methylglyoxal detoxification, redox regulation and protein turnover. It is noted that enzymes known to be involved in GA-induced root growth such as fructose bisphosphate aldolase and methylmalonate semialdehyde dehydrogenase were clearly down-regulated. In contrast to wild type rice roots, only a few proteins were changed by salt stress in OSRK1 transgenic rice roots. A comparative quantitative analysis of the proteome level indicated that forty three early salt-responsive proteins were magnified in transgenic rice roots at unstressed condition. These proteins contain single or multiple potential SnRK2 recognition motives. In vitro kinase assay revealed that one of the identified proteome, calreticulin is a good substrate of OSRK1.</p> <p>Conclusions</p> <p>Our present data implicate that rice roots rapidly changed broad spectrum of energy metabolism upon challenging salt stress, and suppression of GA signaling by salt stress may be responsible for the rapid arrest of root growth and development. The broad spectrum of functional categories of proteins affected by over-expression of OSRK1 indicates that OSRK1 is an upstream regulator of stress signaling in rice roots. Enzymes involved in glycolysis, branched amino acid catabolism, dnaK-type molecular chaperone, calcium binding protein, Sal T and glyoxalase are potential targets of OSRK1 in rice roots under salt stress that need to be further investigated.</p
    corecore