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Abstract—One of the main obstacles in full-duplex radios is
analog-to-digital converter (ADC) saturation on a receiver, an ob-
stacle arising from the strong self-interference (SI). To solve this
issue, researchers have proposed various analog self-interference
cancellation (SIC) methods. These methods can be classified
into two types—i) passive suppression and ii) regeneration-and-
subtraction of SI. For the latter case, the tunable RF component,
such as a multi-tap circuit, reproduces and subtracts the SI by
utilizing the knowledge of the transmit signal and the SI channel.
The resolutions of such tunable RF components constitute the
key factor of the analog SIC. Indeed, they are directly related
to how well the SI signal is imitated. Another major issue in
analog SIC is the inaccurate estimation of the SI channel due
to the nonlinear distortions, which mainly come from the power
amplifier (PA). In this paper, we derive a closed-form expression
for the SIC performance of the multi-tap circuit; we consider how
the RF components must ovecome such practical impairments as
digitally-controlled attenuators, phase shifters, and PA. We verify
the derived formula through the link-level SIC simulations. For
a realistic performance analysis, we exploit the measured PA
characteristics and carry out a 3D ray-tracing-based, system-
level throughput analysis. Our results confirm that the non-
idealities of the RF components significantly affect the analog
SIC performance. We believe our study provides insight into the
design of the practical full-duplex system.

Index Terms—Full-duplex, Self-interference cancellation

I. INTRODUCTION

AS demand continues to grow for increasing spectral effi-
ciency and data rates, researchers have, for 5G wireless

communications, discovered a highly promising technology—
full-duplex [1]–[3]. The most significant hurdle in full-duplex
radio is the fact that an analog-to-digital converter (ADC)
has to convert, simultaneously, a signal-of-interest (SoI) and
the self-interference (SI). Because the power of SI typically
exceeds that of SoI by 100 dB [4], succcessful conversion is
possible only if the SI is suppressed within the dynamic range
of the ADC by an analog SI cancellation (SIC).

For sub-6 GHz full-duplex radios, the passive SI suppres-
sors (e.g., circulator, polarized antenna, etc.) typically do not
provide a sufficient SIC capability to prevent the saturation of
the receiver ADC. Therefore, in full-duplex systems engineers
widely adopt additional analog SIC methods [4]–[6]. Such
methods utilize the additional RF components (e.g., a multi-tap
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circuit or auxiliary transmit chain) to regenerate the canceling
signal using the known transmitted signal and the SI channel
knowledge [7]–[9]. The multi-tap circuit consists of tunable
RF components such as time delays, attenuators, and phase
shifters. The value of each component is adjusted to match the
circuit’s output to the negative of the SI. Because the circuit
takes a power amplifier (PA) output as an input, the analog SIC
via multi-tap circuit is capable of eliminating the transmitter
noise.

The SIC capability of the multi-tap circuit depends on the
1) accurate estimation and 2) replication of the received SI.
In [9], the authors derived an optimal attenuators/phase shifters
values that minimized the residual SI with the fixed time-
delay values. Note that the attenuators and phase shifters
are assumed to have infinite resolutions. The resolutions of
digitally-controlled attenuators and phase shifters are often
neglected in the tuning algorithm, as it makes the problem
NP-hard. The authors in [8], [10], [11] also pointed this
out, and eased the problem through linear relaxation and the
gradient-descent-based search. In [7], the authors theoretically
analyzed the power of the residual SI with the proposed
tuning algorithm in [9], considering the imperfect SI channel
estimation and the imperfect time delay alignment between
the SI channel and the circuit. However, this work also
assumes the ideal attenuators and phase shifters. Through
simulations, researchers in [12], [13] investigated the impact
of attenuator resolution on SIC performance. Their results
showed that an attenuator’s low resolution severely degraded
the SIC performance. In [12], the authors observed that the
SIC performance is rapidly improved as they increased the
resolutions of phase shifters and attenuators, however, it is then
saturated when the resolutions reached to the certain level (i.e.,
0.05 dB stepsize for the attenuator and 10-bit phase shifter).
According to the simulation results, the authors in [12] set
the resolutions of phase shifters and attenuators that provide
sufficient analog SIC to prevent the ADC saturation. The
effect of attenuator bias, response time and the phase noise
introduced by attenuator is investigated in [13]–[15].

The other crucial issue affecting the analog SIC via multi-
tap circuit performance is the PA non-ideality. Although the SI
channel estimation can be done offline at the initial, it has to
be updated according to how the SI channel changes. In [10],
the authors implemented WiFi-based MIMO full-duplex radios
and observed that the incorrect SI channel estimation due
to the PA nonlinearity limits SIC performance to 30 dB.
They propsed an iterative tuning algorithm which resolves this
problem and achieve 60 dB cancellation.
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mixer mixer

Fig. 1. A block diagram of the self-interference cancellation simulator.

Taking account into the practical issues mentioned above,
this paper provides realistic performacne analysis of the muli-
tap circuit. The main contributions of this paper is as follows:
• A closed-form expression of the multi-tap circuit’s SIC

performance is derived while considering the resolution
of the digital attenuators, phase shifters, and the practical
PA characteristics. To the best of our knowledge, this
is the first work that theoretically investigates the ana-
log SIC performance with such RF non-idealities. The
derived formula is verified through the link-level SIC
simulations.

• We carry system-level throughput analysis considering
UE-to-UE interference. We model the 3D building struc-
ture and adopt it to the ray-tracing tools with the mea-
sured radiation pattern of the dual-polarized antenna [16],
[17]. We compare the system-level throughputs in the
various SIC scenarios.

The rest of this paper is organized as follows. In Section 2,
we introduce our system model and the preliminaries on the
analog SIC via multi-tap circuit. In Section 3 and Section 4,
we derive the closed-form expressions for the residual SI
considering the limited resolution of the attenuators and the
phase shifters and the nonlinearity of PA. In Section 5, we
present the link-level SIC simulation results and the system-
level throughput analysis. Finally, in Section 6, we present our
conclusions.

II. SYSTEM MODEL AND
MULTI-TAP CIRCUIT-BASED SIC

Fig. 1 depicts a full-duplex system equipped with a analog
SIC via multi-tap circuit. We consider the following three-step
SIC scenario: 1) the passive suppression at the propagation
stage 2) the analog SIC via multi-tap circuit, and 3) the digital
cancellation of the residual SI. The SI channel herein refers to

the response of leakage from a transmitter to the receiver (i.e.,
line-of-sight component) and the reflected signals (non-line-of-
sight components). Let hSI(t) denotes a baseband equivalent
impulse response of the SI channel, then,

hSI(t) =

L−1∑
i=0

ciδ(t− iT ), (1)

where ci is the gain of i-th tap, L is the number of taps, and T
is the baseband sampling period. For each tap coefficient, we
adopt a Rayleigh channel model. We consider an OFDM sys-
tem with K subcarriers, where the frequency-domain channel
gain for k-th subcarrier is represented as

HSI[k] =

L−1∑
`=0

cie
−j2πk`/K . (2)

Let ai, φi, and τi be the attenuator, phase shifter, and time
delay value of the i-th tap, respectively, and Hi is the
corresponding frequency response of the i-th tap. The time
delays of the multi-tap circuit herein are assumed to be pre-
determined [8], [9]. Note that still under investigation is the
optimal setting of the circuit’s time-delay configuration [18].
For the derivation, we consider a general time-delay setting.
The frequency response of the multi-tap circuit is modeled as
a summation of each delay line’s frequency response,

Hcir[k] =

M∑
i=1

Hi[k], (3)

where
Hi[k] = aie

−jφie−jk∆wτi . (4)

Our goal is to match the frequency response of the multi-tap
circuit to the negative of the estimated SI channel, ĤSI,

ĤSI[k] = HSI[k] +N [k], (5)

where N [k] is the circular symmetric complex Gaussian
(CSCG) noise with zero mean and variance σ2. To this end,
we adjust the values of variable attenuators and phase shifters
by solving the following optimization problem.{

ã, φ̃
}

= argmin
{ai,φi}

K−1∑
k=0

(
ĤSI[k]−Hcir[k])

)2

. (6)

Let W denotes the coefficients vector, which contains the
attenuator and phase shifter values.

W =
[
a1e
−jφ1 , a2e

−jφ2 , · · · , aMe−jφM
]T
, (7)

where (·)T is the matrix transposition operation. With the
coefficients W , the corresponding frequency response of the
multi-tap circuit can be represented as

Hcir =


e−j∆wτ1 e−j∆wτ2 · · · e−j∆wτM

e−j2∆wτ1 e−j2∆wτ2 · · · e−j2∆wτM

· · · · · · . . . · · ·
e−jK∆wτ1 e−jK∆wτ2 · · · e−jK∆wτM


︸ ︷︷ ︸

Ω

W,

(8)
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where ∆w is the sampling interval in the frequency domain.
Note that the i-th column of Ω indicates the frequency
response of the time delay τi. The Wiener solution Wo of (6)
is derived in [9] as

Wo = (Ω∗Ω)
−1

Ω∗ĤSI, (9)

= R−1Ω∗ĤSI,

where (·)∗ is the matrix Hermitian operation and R = Ω∗Ω.
By substituting (9) into (8), we get the frequency response of
the optimized circuit Ho

cir,

Ho
cir = ΩWo = ΩR−1Ω∗ĤSI. (10)

The effective SI channel including the multi-tap circuit can be
expressed as HSI − Ho

cir. The average power of the effective
SI channel is then represented as follows:

PHeff =
1

K
E [tr [(HSI −Ho

cir)(HSI −Ho
cir)
∗]] , (11)

where tr(·) denotes the trace of a matrix. The authors in [7]
derived PHeff as follows:

PHeff =
M

K
σ2 +

1

K
tr(HSIH

∗
SI − ΩR−1Ω∗HSIH

∗
SI). (12)

Note that the analog SIC can be represented as C =
−10 log10(PHeff). In this paper, we denote the estimation error
of the SI channel induced by noise, r, as follows:

r = 10 log10

(
σ2

Power(HSI)

)
. (13)

Equation (12) shows that the multi-tap circuit’s SIC perfor-
mance heavily depends on the time delays of the circuit and
the estimation error of the SI channel. The results in [7],
however, neglected the quantization errors induced by the
phase shifters and attenuators. Moreover, the estimation errors
of the SI channel caused by the nonlinear distortions were
simply treated as Gaussian noise, where the appropriate values
of the mean and variance of the noise was not introduced.
The authors in [10] observed that the nonlinear distortions
significantly reduce the multi-tap circuit’s SIC performance.

In the rest of this paper, we show that the resolutions of the
phase shifters and attenuators are crucial for the analog SIC via
multi-tap circuit. We also analyze the impact of the nonlinear
distortions on the multi-tap circuit’s SIC performance more
precisely.

III. IMPACT OF NON-IDEAL RF COMPONENTS

A. Non-Ideal Attenuators and Phase Shifters

The attenuators and phase shifters are extensively adopted
in the analog SIC, where the additional RF components
regenerate the negative of SI. The authors in [13], [19] the
impact of practical impairments of the attenuators and phase
shifters such as phase-shift introduced by an attenuator are
investigated. The quantization errors induced at the phase
shifters and attenuators are considered in [13], [20]. In [20],
the authors proposed a mmWave beamforming codebook that
minimizes the SI while achieving high beamforming gain over
the desired coverage regions. The authors in [13] numerically

TABLE I
SIMULATION PARAMETERS

System Parameter Notation Values
Modulation 256QAM
Tx power 23dBm

Received noise floor -90dBm
FFT size 128
CP length 16

Phase shifter bits B 8bit
Attenuator step size δ 0.1dB

analyzed the multi-tap circuit’s SIC performance with a finite
attenuator stepsize.

In this section, we derive the multi-tap circuit’s SIC perfor-
mance with the B-bit phase shifters and the attenuator with
a stepsize of δ in dB scale. The values of attenuation ai and
phase shift φi are then quantized as

−20 log10 ai ∈ {0, δ, 2δ, · · · } ,

−φ ∈
{

0,
2π

2B
,

4π

2B
, · · · , (2B − 1)2π

2B

}
.

Let na,i and nq,i denote the quantization errors induced by
i-th attenuator and phase shifter. The quantization errors na,i
and nq,i are modeled as the uniform random variables (UUU(·)),

na,i ∼ UUU
([
−δ

2
,
δ

2

])
, (14)

nq,i ∼ UUU
([
− 2π

2B+1
,

2π

2B+1

])
. (15)

The quantized attenuation and phase shifter ãqi and φ̃qi are then
represented as

ãqi = ãi10na,i/20, (16)

φ̃qi = φ̃i + np,i. (17)

Now we define the quantization error matrix Q, to represent
the quantized tap coefficients W q

o as follows:

W q
o =

[
ãq1e
−jφ̃q1 , ãq2e

−jφ̃q2 , · · · , ãqMe−jφ̃
q
M

]T
= WoQ,

where

Qij =

{
10na,i/20e−jnp,i for i = j

0 for i 6= j.
(18)

By replacing Wo as W q
o in (8) and (11), we obtain the average

power of the effective SI channel with non-ideal attenuators
and phase shifters (P qHeff

),

P qHeff
=

1

K
E [tr [(HSI −Ho

cirQ)(HSI −Ho
cirQ)∗]] . (19)

For convenience, we denote E [HSIH
∗
SI] as EHSIH∗

SI
. Note

that we adopt the Rayleigh channel model to tap coefficients,
departing from the deterministic channel model adopted in [7].
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Theorem 1. The average power of the effective SI channel
with the multi-tap circuit with B-bit phase shifters and atten-
uator stepsize δ (in dB scale), P qHeff

, can be rewritten as

P qHeff
=

1

K
tr[EHSIH∗

SI
] +

(PA1)2 − 2PA1

K
tr[ΩR−1Ω∗EHSIH∗

SI
]

+
σ2

K

[
(PA1)2M + (A2 − (PA1)2)Ktr(R−1)

]
+
(
A2 − (PA1)2

)
tr
[
Ω(R−1)2Ω∗EHSIH∗

SI

]
, (20)

where P = 2B

π sin
(
π
2B

)
, A1 = 20

δln(10)

(
10

δ
40 − 10

−δ
40

)
, and

A2 = 10
δln(10)

(
10

δ
20 − 10

−δ
20

)
.

Proof. See Appendix-A.

Corollary 1. With ideal attenuators and phase shifters, (20)
can be rewritten as (12), i.e., limB→∞,δ→0 P

q
Heff

=PHeff .

Proof. By taking B →∞, and δ → 0, we get the following:

lim
B→∞

P = lim
B→∞

2B

π
sin
( π

2B

)
= 1,

lim
δ→0

A1 = lim
δ→0

20

δln(10)

(
10

δ
40 − 10

−δ
40

)
= 1,

lim
δ→0

A2 = lim
δ→0

10

δln(10)

(
10

δ
20 − 10

−δ
20

)
= 1. (21)

We obtain Corollary 1 by substituting P =A1 =A2 =1 in (20).

In (20), P and (A1, A2) are associated with the reso-
lutions of the phase shifters and attenuators, respectively.
Based on (20), we calculate the analog SIC via multi-
tap circuit with non-ideal phase shifters and attenuators,
Cq = −10 log10(P qHeff

). The SIC that provided by the
multi-tap circuit with different phase shifter and attenu-
ator resolutions are shown in Fig. 2(a) and Fig. 2(b).
The simulation values are matched well with the theoret-
ical values. The expected SI channel tap gains are set to
{0 dB,−25 dB,−30 dB, · · · ,−75 dB} [7] and the estimation
error of the SI channel induced by noise is set to −50 dB.
We assume that, for the SI channel estimation, all subcarriers
are used. The red line of Fig. 2(a) corresponds to the case
of the ideal phase shifters. For the other three lines, we set
the resolutions of the phase shifters to {10, 8, 6} bits. The
resolutions of the attenuators are fixed at 0.01 dB for Fig. 2(a).
In Fig. 2(b), we compare the cases of the ideal attenuators and
the attenuators with stepsize {0.01, 0.1, 0.5} dB. We observe
a severe degradation of the SIC ability of the multi-tap circuit
due to the quantization errors induced by the phase shifters
and attenuators. To see the fundamental limits of achievable
SIC performance with practical attenuators and phase shifters,
we prove the following:

Corollary 2. Even if the power of noise σ2 is zero, and the
time delays of the multi-tap circuit perfectly match that of the
SI channel, the SI still remains; this is due to the quantization
errors induced by the phase shifters and attenuators, where

the minimum average power of the effective SI channel with
the multi-tap circuit is

P̃ qHeff
=

1− 2PA1 +A2

K
tr(EHSIH∗

SI
). (22)

Proof. Let τi = iT . Then we get R = KIM , since

Rab =Φ∗bΦa =

M∑
m=1

e−j∆wτm(a−b) (23)

=

{
K for a = b

0 for a 6= b.

By substituting R = KIM , (20) can be simplified as

P̃ qHeff
=

1

K
tr(EHSIH∗

SI
)− 2PA1 −A2

K
tr(ΩR−1Ω∗EHSIH∗

SI
)

(24)

+
σ2

K
A2M.

When the number of circuit’s taps, M , is greater than or equal
to the number of SI channel’s taps, Lf , tr(ΩR−1Ω∗EHSIH∗

SI
)

becomes tr(EHSIH∗
SI

) [7]. With this, we get (22) by substitut-
ing σ2 =0 into (30), since we assume the SI channel estimation
is perfect.

Note that K,EHSIH∗
SI
,Ω, and M are the parameters as-

sociated with the SI channel and the circuit’s tap delay
configuration. The term (1−2PA1+A2) can be interpreted as
an indicator of the SIC performance degradation due to the
quantization errors induced by phase shifters and attenuators.
If we assume the ideal phase shifters and attenuators, (22) goes
to 0, which implies the perfect SIC. The key factor of the
analog SIC performance, as demonstrated by the simulation
and analytical analysis, are the resolutions of the phase shifters
and attnuators. Thus, the resolutions of the phase shifters and
attnuators should be taken account into the design of the multi-
tap circuit and it’s optimization algorithm.

B. Non-Ideal Power Amplifier

In this section, we investigate the effect of PA nonlinearity
on the analog SIC performance. In the systems with high peak-
to-average power ratio (PAPR) such as orthogonal frequency
division multiplexing (OFDM), researchers consider PA non-
linearity to be the main hurdle in the digital SIC [22]–[25]. As
the PA nonlinearity deteriorates the accuracy of the SI channel
estimation, it also affects the SIC performance of the multi-
tap circuit. The authors in [10] implemented an OFDM-based
full-duplex system with the multi-tap circuit and observed that
the transmitter produces the nonlinearities 30 dB lower than
the transmitted signal. This phenomenon fundamentally limits
the multi-tap circuit’s SIC performance to 30 dB. Therefore,
the authors in [10] proposed an iterative tuning algorithm to
solve it and achieved 60 dB cancellation.

We adopt the parallel Hammerstein model to analyze a
channel estimation error caused by the practical (i.e., non-
linear) PA. The parallel Hammerstein model represents the
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Fig. 2. SIC versus the number of taps with different attenuator and phase shifter resolutions. The estimation error of SI channel induced by noise r = −50 dB.
(a) The stepsize of the attenuator is fixed at 0.01 dB. (b) The phase shifter bits is fixed at 10.
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Fig. 3. (a) The practical PA adopted in [16], [21] and PXIe platform. (b) A fitting curve of the input and output signals of the PA (red line). The corresponding
polynomial is yPA = 35.89x− 2.24|x|2x.

relationship between the input and output signals of the PA as
follows:

yPA[n] =

P−1∑
p=0

ψ2p+1|x[n]|2px[n]

=ψ1x[n] + ψ3|x[n]|2x[n]︸ ︷︷ ︸
x3[n]

+ · · · , (25)

where x[n] and yPA[n] is the transmitted and power amplifier
output signals on time n, 2P −1 is the highest order of the
model, and ψp are the nonlinear coefficients. Note that the
higher-order terms can usually ignored [10], [21]. We adopt
the 3-order parallel Hammerstein model (i.e., P = 2). In (25),
ψ1 and ψ3 denote the linear gain and 3-order gain in the
time-domain signal, respectively. The authors in [21] fitted
the parallel Hammerstein model according to the measured

input/output power of the PA1 with the PXIe software-defined
radio (SDR) platform depicted in Fig. 3(a) [16]. We depict
the power of input and output signals of the modeled PA
in Fig. 3(b), where the corresponding polynomial is yPA =
35.89x − 2.24|x|2x. In the theoretical analysis, we assume
that the linear gain ψ1 is 1.

For the third case, we employ the measured PA characteris-
tics . As we assume unity linear gain in the theoretical analysis,
we normalized the polynomial by ψ1 = 35.89, which yields
us yPA = x − 0.06|x|2x. respectively. The power of the PA’s
input signal is set at -7 dBm [21]. Reflecting the nonlinear
distortions in the SI channel estimation, (5) can be rewritten
as

ĤSI[k] = HSI[k] +
X3[k]HSI[k]

X[k]
+N [k], (26)

where X[k] and X3[k] denote the frequency-domain gain of

1Mini-Circuits ZVA-183W+ Super Ultra Wideband Amplifier
http://www.minicircuits.com/pdfs/ZVA-183W+.pdf
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Fig. 4. SIC versus the number of taps (M ) with the ideal PA (the red and
blue lines) and the practical PA (the green line). The estimation error of SI
channel induced by noise, r = −50 dB. B=10 and δ=0.01 dB.

x1[n] and x3[n] for k-th subcarrier, respectively. The term
X3[k]HSI[k]

X[k] represents the channel estimation error induced by
the PA nonlinearity. We derive the SIC performance with non-
linear PA by substituting N [k] in (31) with X3[k]HSI[k]

X[k] +N [k].
For convenience, we define the following system parameters:

p1
def
= E

[
|X[k]|2

]
,

p2
def
= E

[
|X[k]|4

]
p3

def
= E

[
1

|X[k]|2
]
. (27)

In the derivation of Theorem 1, we use the properties of N ,
such that E[N(k)] = 0, and E[NN∗] is a diagonal matrix
where the diagonal elements are σ2. These properties no
longer hold after we consider the distortion induced by the
PA. Instead, we utilized the following Lemma.

Lemma 1. Let NPA(k)
def
= X3[k]

X[k] , then,

m1
def
= E[NPA(k)] = ψ3p1(2K − 1)K,

m2
def
=E[|NPA(k1)|2],

=
ψ2

3

K2

{
4(K− 1)2p1 +(4K−3)p2 + (K − 1)p2p3

m3
def
=E[NPA(k1)N∗PA(k2)], for k1 6= k2

=
ψ2

3

K2

{
(4K2 − 6K)p1 + 4(K − 1)p2

}
≈ 4ψ2

3p1. (28)

Proof. See Appendix-B.

Based on Lemma 1, we derive the following:

Theorem 2. The average power of the effective SI channel
with the multi-tap circuit with B-bit phase shifters, attenu-
ator stepsize δ, and nonlinear power amplifier with 3-order
nonlinear coefficient ψ3, P q,PA

Heff
, can be rewritten as

P q,PA
Heff

=
1

K
tr[EHSIH∗

SI
]

+
(1+2m1+m3)(PA1)2−2(m1+1)PA1

K
tr[ΩR−1Ω∗EHSIH∗

SI
]

+
(m2−m3) (PA1)2

K
tr
[
ΩR−1Ω∗D(EHSIH∗

SI
)
]

+
σ2

K

[
(PA1)2M + (A2 − (PA1)2)Ktr(R−1)

]
+
(
1+2m1+m3)(A2 − (PA1)2

)
tr
[
R−1Ω∗EHSIH∗

SI
ΩR−1

]
+
(
m2−m3)(A2 − (PA1)2

)
tr
[
R−1Ω∗D(EHSIH∗

SI
)ΩR−1

]
,

(29)

where D(EHSIH∗
SI

) denotes the diagonal matrix whose diag-
onal elements are equal to that of EHSIH∗

SI
. The quantities

P,A1, A2,m1,m2 and m3 are defined in (20) and (28).

Proof. See Appendix-C.

In Lemma 1, m1,m2, and m3 are the parameters associated
with the nonlinear distortions induced by PA. Note that these
parameters are expressed in terms of the 3-order gain of
the PA, ψ3, and the system parameters p1, p2, p3, and K.
Fig. 4 shows a comparison between the SIC performance with
the ideal and practical PAs. We compare the following three
scenarios: i) ideal PA, attenuators and phase shifters, ii) ideal
PA, non-ideal attenuators and phase shifters (δ = 0.01 dB,
B = 10 bits), and iii) non-ideal PA, attenuators and phase
shifters (δ = 0.01 dB, B = 10 bits). We observe the notable
differences between the SIC performances of the case ii) and
iii) (i.e., the blue line and the green line, respectively). To
analyze the impact of the non-idealities of the PA and the
phase shifters/attenuators separately, we derive the following
corollary:

Corollary 3. Even if the power of noise σ2 is zero, and the
time delays of the multi-tap circuit perfectly match that of
the SI channel, the SI still remains due to the PA’s nonlinear
distortions and the quantization errors induced by the phase
shifters and attenuators, where the minimum average power
of the effective SI channel with the multi-tap circuit is

P̃ q,PA
Heff

= P̃ qHeff
− tr(EHSIH∗

SI
)×
(2m1(PA1−A2)−m3A2

K2

)
+ tr(ΩΩ∗D(EHSIH∗

SI
))×

(A2(m2 −m3)

K2

)
. (30)

Proof. See Appendix-D.

In (30), we present the minimum average power of the
effective SI channel with the non-ideal PA, phase shifters, and
attenuators, P̃ q,PA

Heff
. Note that P̃ q,PA

Heff
consists of P̃ qHeff

, and the
terms associated with the nonlinear distortions induced by PA.
Based on (22) and (30), we depict the achievable SIC of the
multi-tap circuit with ideal and non-ideal PA in Fig. 5(a) and
Fig. 5(b), respectively.

IV. SYSTEM LEVEL THROUGHPUT ANALYSIS

In this section, we provide system-level throughput eval-
uations of a full-duplex system equipped with analog SIC
via multi-tap circuit in indoor multi-cell environments. In
Fig. 6(a), we illustrate the modeled building structure and
BS deployments. We deployed the five BSs equipped with
dual-polarized antennas. Depicted in Fig. 6(b) is the measured
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(a) (b)

Fig. 5. The achievable SIC with different phase shifter and attenuator resolutions. (a) The case of the ideal PA. (b) The case of the non-ideal PA (see
Fig. 3(b)).

radiation pattern of the adopted dual-polarized antenna. For
the indoor channel modeling, we utilized the 3D ray-tracing
tool developed by Bell Labs [26]–[28], Wireless System Engi-
neering (WiSE). We calculated the power-delay-profile (PDP)
of the SI channel for each BS through 3D ray-tracing and
reflected it in the link-level SIC simulations.

In Fig. 6(c), we present the link-level SIC results for BS 1.
We adopt the two different SIC scenarios for both the analog
and digital SIC. For the analog SIC, we consider the ideal
and non-ideal RF components (i.e., 8-bit phase shifter, the
attenuator with stepsize 0.1 dB, and the PA characteristics
introduced in [21]) in the simulations. The residual SI is once
again mitigated by the linear/nonlinear digital SIC algorithms.
The linear digital SIC algorithm cancels the residual SI in the
frequency domain assuming a linear model. With the linear
digital SIC, the total SIC performance degraded by 9 dB taking
into account the non-idealities of the RF components (i.e.,
the residual SI power increases -81 dBm to -72 dBm). On
the other hand, the nonlinear digital SIC algorithm cancels
the SI close to the noise floor regardless the analog SIC
performance degraadation due to the non-idealities of the
RF components. This happens because the linear digital SIC
cannot suppress the nonlinear distortion which mainly comes
from the PA nonlinearity. The cancellation of the nonlinear
distortion is carried by the analog SIC and the nonlinear
digital SIC. Note that the multi-tap circuit is able to cancel the
nonlinear distortions since the circuit takes the PA’s output as
an input. The nonlinear digital SIC algorithm herein refers to
the algorithm proposed in [22], which estimates and cancels
the SI based on the parallel Hammerstein model. With the
practical RF components the necessity of the nonlinear digital
SIC is emphasized as it can make up the cancellation of the
nonlinear distortions.

Fig. 7 depicts the ergodic throughputs of the half-duplex
and full-duplex system with the four different SIC scenarios.
For each SIC scenario, the solid line in Fig. 7 corresponds
to the cumulative distribution function (CDF) of the system
throughputs with random user equipment (UE) selection. The
dashed lines are correspond to the CDF of the system through-

puts without UE-to-UE interference, which can be achieved by
the perfect UE selection. Note that the upper bounds of the
system throughputs are indicated by no UE-to-UE interference
cases. With the non-ideal RF components and linear digital
SIC (the solid red line), only 45 percent of UEs can achieve
better throughputs than that of the half-duplex system when the
UE-to-UE interference exists, while all of UEs can achieve the
benefit of the full-duplex system with the ideal RF components
(the solid blue line). The green and black lines in Fig. 7
correspond to the case of the full duplex system with the
nonlinear digital SIC. The gap between the red and green lines,
and the blue and black lines can be interpreted as the impact
of residual nonlinear SI components. The system throughput
values for the half-duplex system and the full-duplx system
with different SIC scenarios are represented in Fig. 8. The
overall results make clear that the non-idealities of the RF
components significantly affect the analog SIC performance,
which puts a burden on the digital SIC.

V. CONCLUDING REMARKS

In this paper, we investigated the analog SIC performance
of the multi-tap circuit with practical RF components. We
theoretically derived the SIC performance considering the
resolution of the attenuators and phase shifters and the PA
nonlinearity. We have verified the derived formula through
link-level SIC simulations. For the realistic performance anal-
ysis, we employed measured PA characteristics. We carried
system-level throughput evaluations in an interference-limited
environment via 3D ray-tracing. Our results manifest that we
should consider the limited resolution of the attenuators and
phase shifters in the design of analog SIC.
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Fig. 6. (a) The modeled building structure and the base station (BS) deployments for the system-level throughput analysis. (b) The measured radiation pattern
of the dual-polarized antenna. (c) The link-level SIC simulation results for BS1. Note that the noise floor is -90 dBm.
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Fig. 7. The CDFs of the system throughput values.
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APPENDIX A
PROOF OF THEOREM 1

Using the facts that i) tr(·) and E are commutative and ii)
tr(AB) = tr(BA), we can expand (19) as

P qHeff
=

1

K
tr(E[HSIH

∗
SI])−

2

K
tr(E[ΩQR−1Ω∗HSIH

∗
SI])︸ ︷︷ ︸

(a)

+
1

K
tr(E[ΩR−1Q∗RQR−1Ω∗HSIH

∗
SI])︸ ︷︷ ︸

(b)

+
1

K
tr(E[ΩR−1Q∗RQR−1Ω∗NN∗])︸ ︷︷ ︸

(c)

+
1

K
tr(E[ΩR−1Q∗RQR−1Ω∗(NH∗SI +HSIN

∗)])︸ ︷︷ ︸
(d)

− 2

K
tr(E[ΩQR−1Ω∗NH∗SI])︸ ︷︷ ︸

(e)

. (31)

Since E[N(k)] = 0, the last two terms, (d, e) are zero.
Note that the elements in N and Q are independent, and all
the other matrices in the three expectation terms in (31) are
deterministic. Therefore, the term (a) in (31) is equal to

(a) =
2E[Qii]

K
tr(ΩR−1Ω∗E[HSIH

∗
SI]). (32)

To simplify the terms (b) and (c), we first derive the following
property. For the deterministic matrices A, B and the quanti-
zation matrix Q,

tr (E[Q∗AQB])

= E

 M∑
i=1

M∑
j=1

Q∗iiQjjAijBji


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Mbps HD downlink
FD linear DSIC,

w/non-ideal comp.
(random/perfect sche.)

FD linear DSIC, 
w/ideal comp.

(random/perfect sche.)

FD nonlinear DSIC,  
w/non-ideal comp.

(random/perfect sche.)

FD nonlinear DSIC,  
w/ideal comp.

(random/perfect sche.)

Median 92.33 86.11 / 115.95 110.67 / 164.88 116.07 / 176.65 116.43 / 178.73

Average 74.29 101.78 / 119.04 117.86 / 148.16 121.57 / 156.00 122.01 / 157.52

10-percentile 109.29 215.17 / 216.60 217.34 / 218.23 217.59 / 218.41 217.65 / 218.44

90-percentile 9.97 6.41 / 13.61 13.26 / 42.94 15.19 / 56.69 15.42 / 59.62

Fig. 8. The representative system throughput values of the half-duplex system and the full-duplex system with different SIC scenarios.

= E

 M∑
i=1

|Qii|2AiiBii +

M∑
i 6=j,i=1

M∑
j=1

Q∗iiQjjAijBji


= E[|Qii|2]

(
M∑
i=1

AiiBii

)
+ E[Q∗iiQjj ]

 M∑
i 6=j,i=1

M∑
j=1

AijBji


=
(
E[|Qii|2]−E[Qii]

2
)( M∑

i=1

AiiBii

)
+ E[Qii]

2tr(AB).

(33)

Note that E[|Qii|2] and E[Qii] can be calcaulated as

E[Qii] = E[10(na,i)/20]E[e−jnp,i ]

=
20

δ ln(10)
(10

δ
40 − 10

−δ
40 )

∫ π

2B

− π

2B

2B

2π
e−jxdx

=
20

δ ln(10)
(10

δ
40 − 10

−δ
40 )︸ ︷︷ ︸

A1

2B

π
sin(

π

2B
)︸ ︷︷ ︸

P

, (34)

E[|Qii|2] = E[10na,i/10]

=

∫ δ/2

−δ/2

1

δ
10x/10dx

=
10

δ ln(10)
(10

δ
20 − 10

−δ
20 )︸ ︷︷ ︸

A2

. (35)

In (26) and (27), we define three quantities, (A1, A2) and P ,
which are related to the attenuator stepsize and phase shifter
bits, respectively. We can rewrite (33) as

tr(E[Q∗AQB])=
(
A2−P 2A2

1

)( M∑
i=1

AiiBii

)
+ P 2A2

1tr(AB).

(36)

Using this property and the fact that Rii = K, we obtain the
followings:

(a) =
2PA1

K
tr(ΩR−1Ω∗E[HSIH

∗
SI]),

(b) =
1

K
[tr(E[Q∗RQ(R−1Ω∗HSIH

∗
SIΩR

−1)])]

=
1

K

[
P 2A2

1tr(ΩR−1Ω∗HSIH
∗
SI)

+(A2 − P 2A2
2)tr(Ω(R−1)2Ω∗HSIH

∗
SI)
]
,

(c) =
σ2

K

[
tr(E[Q∗RQR−1])

]

=
σ2

K
[P 2A2

1M +K(A2 − P 2A2
1)tr(R−1)]. (37)

We get (20) by integrating (a), (b) and (c).

APPENDIX B
PROOF OF LEMMA 1

Since x3[n] is ψ3x[n]x∗[n]x[n], we can rewrite E[NPA[k1]]
as follows, by using the properties of discrete fourier transform
(DFT).

E[NPA[k1]] (38)

=E[
ψ3

X[k1]K

K−1∑
m=0

{
K−1∑
n=0

X[n]X∗[(n−m)K ]X[(k1−m)K ]}],

where (·)K denotes the modulo-K operation. Note that (38)
is the expectation of the sum of K2 different terms (i.e.,
for the case of (m,n) = (1,2), the corresponding term is
ψ3X[2]X∗[1]X[k1−1]

X[k1]K2 ). We denote the corresponding terms for
index (m,n) as Pk1(m,n).

Pk1(m,n) =
ψ3X[n]X∗[(n−m)K ]X[(k1−m)K ]

X[k1]K
. (39)

To calculate (38), we classify the index (m,n) as follows:

Sk11 = {(m,n)|m = 0, n = k1}, |Sk11 | = 1,

Sk12 = {(m,n)|m = 0, n 6= k1}, |Sk12 | = K−1,

Sk13 = {(m,n)|m 6= 0, n = k1}, |Sk13 | = K−1,

Sk14 = {(m,n)|m 6= 0, n=(k1−m)K}, |Sk14 | = K−1,

Sk15 = {(m,n)|(m,n) /∈ {Sk11 ∪ Sk12 ∪ Sk13 ∪ Sk14 }}, (40)

where |Sk11 |= 1, |Sk12 |= |Sk13 |= |Sk14 |=K− 1, and |Sk15 | =
K2−3K−2. For the each subset, we calculate E[Pk1(m,n)]
as

E[Pk1(m,n)]=



E[ψ3|X[k1]|2
K ] = ψ3p1

K , (m,n)∈Sk11

E[ψ3|X[n]|2
K2 ] = ψ3p1

K , (m,n)∈Sk12

E[ψ3|X[(k1−m)K ]|2
K2 ] = ψ3p1

K , (m,n)∈Sk13

E[ψ3X[(k1−m)K ]2X∗[(k1−2m)K ]
X[k1]K ]=0, (m,n)∈Sk14

E[ψ3X[n]X∗[(n−m)K ]X[(k1−m)K ]
X[k1]K ]=0, (m,n)∈Sk15 .

(41)

Note that the real and imaginary part of X[k] are independent
discrete-uniform random variable with mean and variance are
0 and 1/2. We get (28) by tally up all the cases listed in (40).

E[NPA[k1]] =

5∑
i=1

|Si|E[Pk1(m,n)|(m,n) ∈ Si]
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=
ψ3p1

K
+
ψ3p1(K − 1)

K
+
ψ3p1(K − 1)

K

=
ψ3p1(2K − 1)

K
. (42)

From (38), we get

E[NPA[k1]N∗PA[k2]] = E[
ψ2

3

X[k1]X∗[k2]K2
(43)

×
K−1∑
m1=0

{
K−1∑
n1=0

X[n1]X∗[(n1 −m1)K ]X[(k1 −m1)K ]}

×
K−1∑
m2=0

{
K−1∑
n2=0

X∗[n2]X[(n2 −m2)K ]X∗[(k2 −m2)K ]}].

We can interpret (43) as an expectation of the summation of
the K4 combinations of Pk1(m1, n1), and Pk2(m2, n2). Let I1,
and I2 denote the indices (m1, n1), and (m2, n2), respectively.
The concatenation of the two indices, I1, and I2, is denoted
by I. Similar to (40), we classify the K4 different terms as
follows:

When k1 = k2,

T1 ={I|I1, I2 ∈ Sk11 },
T2 ={I|I1 ∈ Sk11 , I2 ∈ {Sk12 ∪ Sk13 }},
T3 ={I|I1 ∈ {Sk12 ∪ S3}, I2 ∈ Sk11 },
T4 ={I|I1 ∈ Sk12 , I2 = I1},
T5 ={I|I1 ∈ Sk12 , I2∈Sk13 ,m2≡k1−n1},
T6 ={I|I2 ∈ Sk12 , I1∈Sk13 ,m1≡k1−n2},
T7 ={I|I1∈ Sk13 , I2∈ Sk13 ,m2 =m1},
T8 ={I|I1, I2∈{Sk12 ∪ S3}}−

⋃
i∈{4,5,6,7}

Ti,

T9 ={I|m1 6=0, n1 =n2≡k1−m1,m2 =m1},
T10 ={I|I1 = I2 ∈ Sk15 , },
T11 ={I|I1 ∈ Sk15 ,m2≡k1−n2, n2≡k1−m2}, (44)

where

E[Pk1(I1)Pk2
∗(I2)] (45)

=



ψ2
3p2
K2 , I ∈ T1

ψ2
3p

2
1

K2 , I ∈ {T2 ∪ T3 ∪ T8}
ψ2

3p2
K2 , I ∈ {T4 ∪ T5 ∪ T6 ∪ T7}
ψ2

3p1p2p3
K2 , I ∈ {T9}

ψ2
3p

3
1p3

K2 , I ∈ {T10 ∪ T11}.

(46)

Then we get m2.

m2 =E[NPA[k1]N∗PA[k1]]

=

11∑
i=1

|Ti|E[Pk1(I1)P ∗k2(I2)|I ∈ Ti]

=
ψ2

3

K2

{
(4K2−10K+6)p2

1 +(4K−3)p2 + (K−1)p1p2p3

+2(K2−3K+2)p3
1p3

}
. (47)

We derive (29) in the same way.

When k1 6= k2,

U1 ={I|I1 ∈ Sk11 , I2 ∈ Sk21 },
U2 ={I|I1∈Sk11 ,m2 ≡n2−k1, n2∈{k1, k2}},
U3 ={I|m1≡n1−k2, n1∈{k1, k2}}, I2 ∈Sk21 },
U4 ={I|I1∈Sk11 , I2 ∈{Sk22 ∪ Sk23 }}−U2,

U5 ={I|I1∈{Sk12 ∪ Sk13 }, I2 ∈Sk21 }−U3,

U6 ={I|I1∈Sk12 , I2 ∈ Sk22 , n1 =n2},
U7 ={I|I1∈Sk12 , I2 ∈ Sk23 , n1≡k2−m2},
U8 ={I|I1∈Sk13 , I2 ∈ Sk22 , n2≡k1−m1},
U9 ={I|I1∈Sk13 , I2 ∈ Sk23 , k1−m1≡k2−m2},
U10 ={I|I1∈{Sk12 ∪Sk13 }, I2 ∈{Sk22 ∪Sk23 }}

−
⋃

i∈{6,7,8,9}

Ui,

U11 ={I|I1 ∈Sk15 , I2 ∈Sk25 , n1−m1≡k2,n2−m2≡k1},
(48)

where

E[Pk1(I1)P ∗k2(I2)]

=

{
ψ2

3p
2
1

K2 , I ∈ ⋃i∈{1,4,5,10,11} Ui,
ψ2

3p2
K2 , I ∈ ⋃i∈{2,3,6,7,8,9} Ui. (49)

We obtain m3 as follows:

m3 = E[NPA[k1]N∗PA[k2]]

=

10∑
i=1

|Ui|E[P (I1)P (I2)|I ∈ Ui]

=
ψ2

3

K2

{
(4K2 − 6K)p2

1 + 4(K − 1)p2

}
. (50)

APPENDIX C
PROOF OF THEOREM 2

Let G be NPA ◦ HSI + N , where ◦ denotes the Hadamard
product operation. Note that P q,PA

Heff
can be obtained by sub-

stituting N in (31) with G. Hence, we express P q,PA
Heff

through
modifying the last three terms in (31) (i.e., c, d, e) as follows:

P q,PA
Heff

=
1

K
tr[EHSIH∗

SI
]−(a)+(b)+(c′)+(d′)−(e′), (51)

where

(c′) =
1

K
tr(E[ΩR−1Q∗RQR−1Ω∗GG∗])

(d′) =
1

K
tr(E[ΩR−1Q∗RQR−1Ω∗(GH∗ +HG∗)])

(e′) =
2

K
tr(E[ΩQR−1Ω∗GH∗SI]). (52)

By using Lemma 1 and 2, we obtain

E[GH∗SI] = m1E[HSIH
∗
SI],

E[GG∗] = (m2−m3)D(E[HSIH
∗
SI]) +m3E[HSIH

∗
SI] + σ2I,

(53)

where D(EHSIH∗
SI

) denotes the diagonal matrix whose diag-
onal elements are equal to that of EHSIH∗

SI
. Using (53), we

simplify (52) as follows:

(c′) = (c) +m3(b)
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+
m2 −m3

K

[
P 2A2

1Ktr(ΩR−1Ω∗D(E[HSIH
∗
SI)])

+(A2 − P 2A2
2)tr(Ω(R−1)2Ω∗D(E[HSIH

∗
SI]))

]
(d′) = 2m1(b)

(e′) = m1(a). (54)

Now we get Theorem 2 by substituting (54) into (51).

APPENDIX D
PROOF OF COROLLARY 3

By substituting ΩR−1Ω∗EHSIH∗
SI

= EHSIH∗
SI

, R = KIM ,
and σ2 = 0, we can rewrite (30) as

P̃ q,PA
Heff

=
1

K
tr[EHSIH∗

SI
]

+
(1−2m1+m3)(PA1)2−2(m1+1)PA1

K
tr[EHSIH∗

SI
]

+

(
1−2m1+m3)(A2 − (PA1)2

)
K

tr
[
EHSIH∗

SI

]
+
A2 (m2−m3))

K2
tr
[
ΩΩ∗D(EHSIH∗

SI
)
]
. (55)

We can easily get (30) from (55) by using (22).
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