1,514 research outputs found

    Effects of a multi-herbal extract on type 2 diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An aqueous extract of multi-hypoglycemic herbs of <it>Panax ginseng </it>C.A.Meyer, <it>Pueraria lobata, Dioscorea batatas Decaisne, Rehmannia glutinosa, Amomum cadamomum Linné, Poncirus fructus </it>and <it>Evodia officinalis </it>was investigated for its anti-diabetic effects in cell and animal models.</p> <p>Methods</p> <p>Activities of PPARγ agonist, anti-inflammation, AMPK activator and anti-ER stress were measured in cell models and in <it>db/db </it>mice (a genetic animal model for type 2 diabetes).</p> <p>Results</p> <p>While the extract stimulated PPARγ-dependent luciferase activity and activated AMPK in C2C12 cells, it inhibited TNF-α-stimulated IKKβ/NFkB signaling and attenuated ER stress in HepG2 cells. The <it>db/db </it>mice treated with the extract showed reduced fasting blood glucose and HbA<sub>1c </sub>levels, improved postprandial glucose levels, enhanced insulin sensitivity and significantly decreased plasma free fatty acid, triglyceride and total cholesterol.</p> <p>Conclusion</p> <p>The aqueous extract of these seven hypoglycemic herbs demonstrated many therapeutic effects for the treatment of type 2 diabetes in cell and animal models.</p

    Sustained, Photocatalytic CO₂ Reduction to CH₄ in a Continuous Flow Reactor by Earth-Abundant Materials: Reduced Titania-Cu₂O Z-Scheme Heterostructures

    Get PDF
    Photocatalytic conversion of CO₂ and water vapor to hydrocarbon fuels is a promising approach for storing solar energy while reducing greenhouse gas emissions. However, still certain issues including low product yields, limited photocatalyst stability and relatively high cost have hampered practical implementation of this technology. In the present work, a unique strategy is adopted to synthesize a stable, and inexpensive photocatalyst comprised of earth-abundant materials: a reduced titania-Cu₂O Z-scheme heterostructure. Under illumination for 6 h, the optimized reduced titania-Cu₂O photocatalyst enables 0.13 % photoreduction of highly diluted CO₂ with water vapors to 462nmol g⁻¹ of CH₄ while showing excellent stability over seven testing cycles (42 h). Our studies show the Z-scheme inhibits Cu₂O photocorrosion, while its synergistic effects with reduced titania result in sustained CH₄ formation in a continuous flow photoreactor. To the best of our knowledge stability exhibited by the reduced titania-Cu₂O Z-scheme is the highest for any Cu-based photocatalyst

    Thermal analysis of bulk filled composite resin polymerization using various light curing modes according to the curing depth and approximation to the cavity wall

    Get PDF
    OBJECTIVE: The purpose of this study was to investigate the polymerization temperature of a bulk filled composite resin light-activated with various light curing modes using infrared thermography according to the curing depth and approximation to the cavity wall. MATERIAL AND METHODS: Composite resin (AeliteFlo, Bisco, Schaumburg, IL, USA) was inserted into a Class II cavity prepared in the Teflon blocks and was cured with a LED light curing unit (Dr's Light, GoodDoctors Co., Seoul, Korea) using various light curing modes for 20 s. Polymerization temperature was measured with an infrared thermographic camera (Thermovision 900 SW/TE, Agema Infra-red Systems AB, Danderyd, Sweden) for 40 s at measurement spots adjacent to the cavity wall and in the middle of the cavity from the surface to a 4 mm depth. Data were analyzed according to the light curing modes with one-way ANOVA, and according to curing depth and approximation to the cavity wall with two-way ANOVA. RESULTS: The peak polymerization temperature of the composite resin was not affected by the light curing modes. According to the curing depth, the peak polymerization temperature at the depth of 1 mm to 3 mm was significantly higher than that at the depth of 4 mm, and on the surface. The peak polymerization temperature of the spots in the middle of the cavity was higher than that measured in spots adjacent to the cavity wall. CONCLUSION: In the photopolymerization of the composite resin, the temperature was higher in the middle of the cavity compared to the outer surface or at the internal walls of the prepared cavity

    Feasibility of hippocampus-sparing VMAT for newly diagnosed glioblastoma treated by chemoradiation: pattern of failure analysis

    Get PDF
    To identify the pattern of failure and oncological safety of hippocampus (HC)-sparing IMRT (HSRT) in newly diagnosed glioblastoma (GBM) patients. Eighty-two GBM patients treated with temozolomide-based chemoradiation using HSRT between 2014 and 2018 were retrospectively reviewed. HSRT consisted of a sparing of Dmax of the contralateral HC < 17 Gy. Fifteen patients were unable to achieve the dose-constraints for adequate target coverage. The dose to ipsilateral HC was kept as low as possible. The pattern of failure was investigated, focusing on the area in the vicinity of the spared HC (organ and + 1 cm area). The median HSRT dose was 60 Gy in 30 fractions. The median follow-up for survivors was 11.7 months. The median progression-free and overall survival were 9.7 and 23.5 months, respectively. Six (7.3%) and eight (9.8%) patients eventually demonstrated progressive disease at the contralateral HC and HC + 1 cm, respectively. The 12-month contralateral HC and HC + 1 cm failure-free rate were 97.2 and 93.4%, respectively. However, no patient (0%) and two patients (2.4%) showed failure at contralateral HC and HC + 1 cm at initial progression, respectively. The dominant pattern of failure at the contralateral HC was by subependymal seeding (66.7%). The incidence of failure at the contralateral HC and HC + 1 cm is very low and mostly accompanied by disseminated disease progression after HSRT. Since HSRT does not compromise oncological outcomes, it could be considered especially for GBM patients who are expected to have favorable survival outcomes

    Separation of the Tip of a Coblation Wand within the Knee Joint: A Complication of Arthroscopic Adhesiolysis

    Get PDF
    Coblation devices are now widely used in arthroscopic surgery and they show a very low incidence of intraoperative complications. We experienced a case where the tip of the wand separated and migrated into the posterior knee compartment in an arthrofibrotic knee. The free wand tip was identified and then extricated from the popliteal hiatus of the knee with using C-arm fluoroscopic control. To the best of our knowledge, this is the first report of its kind involving coblation wands. We describe this complication to show that the use of coblation devices can lead to unexpected problems and it is imperative to inspect all instruments before and after each surgical use
    corecore