92 research outputs found
Panoptic Segmentation on Panoramic Radiographs: Deep Learning-Based Segmentation of Various Structures Including Maxillary Sinus and Mandibular Canal
Panoramic radiographs, also known as orthopantomograms, are routinely used in most dental clinics. However, it has been difficult to develop an automated method that detects the various structures present in these radiographs. One of the main reasons for this is that structures of various sizes and shapes are collectively shown in the image. In order to solve this problem, the recently proposed concept of panoptic segmentation, which integrates instance segmentation and semantic segmentation, was applied to panoramic radiographs. A state-of-the-art deep neural network model designed for panoptic segmentation was trained to segment the maxillary sinus, maxilla, mandible, mandibular canal, normal teeth, treated teeth, and dental implants on panoramic radiographs. Unlike conventional semantic segmentation, each object in the tooth and implant classes was individually classified. For evaluation, the panoptic quality, segmentation quality, recognition quality, intersection over union (IoU), and instance-level IoU were calculated. The evaluation and visualization results showed that the deep learning-based artificial intelligence model can perform panoptic segmentation of images, including those of the maxillary sinus and mandibular canal, on panoramic radiographs. This automatic machine learning method might assist dental practitioners to set up treatment plans and diagnose oral and maxillofacial diseases.Y
Enhanced cytotoxic effect of radiation and temozolomide in malignant glioma cells: targeting PI3K-AKT-mTOR signaling, HSP90 and histone deacetylases
BACKGROUND: Despite aggressive treatment with radiation therapy and concurrent adjuvant temozolomide (TMZ), glioblastoma multiform (GBM) still has a dismal prognosis. We aimed to identify strategies to improve the therapeutic outcome of combined radiotherapy and TMZ in GBM by targeting pro-survival signaling from the epidermal growth factor receptor (EGFR). METHODS: Glioma cell lines U251, T98G were used. Colony formation, DNA damage repair, mode of cell death, invasion, migration and vasculogenic mimicry as well as protein expression were determined. RESULTS: U251 cells showing a low level of methyl guanine transferase (MGMT) were highly responsive to the radiosensitizing effect of TMZ compared to T98G cells having a high level of MGMT. Treatment with a dual inhibitor of Class I PI3K/mTOR, PI103; a HSP90 inhibitor, 17-DMAG; or a HDAC inhibitor, LBH589, further increased the cytotoxic effect of radiation therapy plus TMZ in U251 cells than in T98G cells. However, treatment with a mTOR inhibitor, rapamycin, did not discernibly potentiate the radiosensitizing effect of TMZ in either cell line. The mechanism of enhanced radiosensitizing effects of TMZ was multifactorial, involving impaired DNA damage repair, induction of autophagy or apoptosis, and reversion of EMT (epithelial-mesenchymal transition). CONCLUSIONS: Our results suggest possible strategies for counteracting the pro-survival signaling from EGFR to improve the therapeutic outcome of combined radiotherapy and TMZ for high-grade gliomas
Appropriateness of rabies post-exposure prophylaxis in pediatric patients visiting the emergency department due to animal bite
Purpose To study the appropriateness of rabies post-exposure prophylaxis (rPEP) for children with animal bite who visited the emergency department (ED). Methods The study enrolled children younger than 18 years with animal bite who visited the National Medical Center ED between January 2014 and October 2017. The children’s electronic medical records were retrospectively reviewed. Data for analysis included age, sex, body parts bitten by animals, species of animals, regions where animal bites occurred, history of recent antibiotics therapy and tetanus vaccination, and justification by the 2017 Guidelines for Rabies Control in Korea and implementation of rPEP. In children who underwent unjustified rPEP or did not undergo justified one, we recorded their guardians’ opinion for or against rPEP. Results Of the 63 enrolled children, rPEP was justified for 38 children by the Korean guidelines. Of the 38 children, 35 actually underwent rPEP. Among the remaining 3 children, 2 did not undergo the prophylaxis as per the guardians’ requests. Among the 25 children whose rPEP was not justified, 8 underwent the prophylaxis. Of these 8 children, 7 did based on the guardians’ requests. Conclusion In this study, inappropriate rPEP was usually affected by the guardians’ requests, regardless of the criteria for such prophylaxis. Thus, their requests for or against rPEP should be discussed with emergency physicians who are aware of the relevant criteria to prevent occurrence of rabies or unnecessary use of medical resources
A Dual Inhibitor of the Proteasome Catalytic Subunits LMP2 and Y Attenuates Disease Progression in Mouse Models of Alzheimer\u27s Disease
The immunoproteasome (iP) is a variant of the constitutive proteasome (cP) that is abundantly expressed in immune cells which can also be induced in somatic cells by cytokines such as TNF-α or IFN-γ. Accumulating evidence support that the iP is closely linked to multiple facets of inflammatory response, eventually leading to the development of several iP inhibitors as potential therapeutic agents for autoimmune diseases. Recent studies also found that the iP is upregulated in reactive glial cells surrounding amyloid β (Aβ) deposits in brains of Alzheimer\u27s disease (AD) patients, but the role it plays in the pathogenesis of AD remains unclear. In this study, we investigated the effects of several proteasome inhibitors on cognitive function in AD mouse models and found that YU102, a dual inhibitor of the iP catalytic subunit LMP2 and the cP catalytic subunit Y, ameliorates cognitive impairments in AD mouse models without affecting Aβ deposition. The data obtained from our investigation revealed that YU102 suppresses the secretion of inflammatory cytokines from microglial cells. Overall, this study indicates that there may exist a potential link between LMP2/Y and microglia-mediated neuroinflammation and that inhibition of these subunits may offer a new therapeutic strategy for AD
Enhanced cytotoxic effect of radiation and temozolomide in malignant glioma cells: targeting PI3K-AKT-mTOR signaling, HSP90 and histone deacetylases
This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.Abstract
Background
Despite aggressive treatment with radiation therapy and concurrent adjuvant temozolomide (TMZ), glioblastoma multiform (GBM) still has a dismal prognosis. We aimed to identify strategies to improve the therapeutic outcome of combined radiotherapy and TMZ in GBM by targeting pro-survival signaling from the epidermal growth factor receptor (EGFR).
Methods
Glioma cell lines U251, T98G were used. Colony formation, DNA damage repair, mode of cell death, invasion, migration and vasculogenic mimicry as well as protein expression were determined.
Results
U251 cells showing a low level of methyl guanine transferase (MGMT) were highly responsive to the radiosensitizing effect of TMZ compared to T98G cells having a high level of MGMT. Treatment with a dual inhibitor of Class I PI3K/mTOR, PI103; a HSP90 inhibitor, 17-DMAG; or a HDAC inhibitor, LBH589, further increased the cytotoxic effect of radiation therapy plus TMZ in U251 cells than in T98G cells. However, treatment with a mTOR inhibitor, rapamycin, did not discernibly potentiate the radiosensitizing effect of TMZ in either cell line. The mechanism of enhanced radiosensitizing effects of TMZ was multifactorial, involving impaired DNA damage repair, induction of autophagy or apoptosis, and reversion of EMT (epithelial-mesenchymal transition).
Conclusions
Our results suggest possible strategies for counteracting the pro-survival signaling from EGFR to improve the therapeutic outcome of combined radiotherapy and TMZ for high-grade gliomas
Hybrid type Charge Equalizer for High Efficiency Battery Management System of Electrical Vehicle
owadays, electric vehicle(EV) or hybrid electric vehicle(HEV) usually adopts a lithium-ion battery string, the charge imbalance of each battery makes many problems such as reduction of life cycle and explosion. Hence, the charge equalization circuit is required to guarantee life time and safety. In charge equalization circuit, the cost of a cell voltage sensing module is relatively high, but the equalization performance gets lower in case module is removed. For higher equalization performance without the cell voltage sensing module, an automatic chare equalizer based on switch-capacitor is proposed. One pre-charged capacitor with average voltage of batteries is implemented from a unidirectional DC-DC converter. The charge equalization can be automatically achieved by periodic connection between battery cell and capacitor charged average voltage without voltage sensing module. By using pre-charged capacitor in switch-capacitor converter, the faster equalization time can be obtained. This paper presents the operational principles and design consideration of the proposed equalizer
Decoupling the metal insulator transition and crystal field effects of VO2
Abstract VO2 is a highly correlated electron system which has a metal-to-insulator transition (MIT) with a dramatic change of conductivity accompanied by a first-order structural phase transition (SPT) near room temperature. The origin of the MIT is still controversial and there is ongoing debate over whether an SPT induces the MIT and whether the Tc can be engineered using artificial parameters. We examined the electrical and local structural properties of Cr- and Co-ion implanted VO2 (Cr-VO2 and Co-VO2) films using temperature-dependent resistance and X-ray absorption fine structure (XAFS) measurements at the V K edge. The temperature-dependent electrical resistance measurements of both Cr-VO2 and Co-VO2 films showed sharp MIT features. The Tc values of the Cr-VO2 and Co-VO2 films first decreased and then increased relative to that of pristine VO2 as the ion flux was increased. The pre-edge peak of the V K edge from the Cr-VO2 films with a Cr ion flux ≥ 1013 ions/cm2 showed no temperature-dependent behavior, implying no changes in the local density of states of V 3d t 2g and e g orbitals during MIT. Extended XAFS (EXAFS) revealed that implanted Cr and Co ions and their tracks caused a substantial amount of structural disorder and distortion at both vanadium and oxygen sites. The resistance and XAFS measurements revealed that VO2 experiences a sharp MIT when the distance of V–V pairs undergoes an SPT without any transitions in either the VO6 octahedrons or the V 3d t 2g and e g states. This indicates that the MIT of VO2 occurs with no changes of the crystal fields
Peri-Implant Bone Loss Measurement Using a Region-Based Convolutional Neural Network on Dental Periapical Radiographs
Determining the peri-implant marginal bone level on radiographs is challenging because the boundaries of the bones around implants are often unclear or the heights of the buccal and lingual bone levels are different. Therefore, a deep convolutional neural network (CNN) was evaluated for detecting the marginal bone level, top, and apex of implants on dental periapical radiographs. An automated assistant system was proposed for calculating the bone loss percentage and classifying the bone resorption severity. A modified region-based CNN (R-CNN) was trained using transfer learning based on Microsoft Common Objects in Context dataset. Overall, 708 periapical radiographic images were divided into training (n = 508), validation (n = 100), and test (n = 100) datasets. The training dataset was randomly enriched by data augmentation. For evaluation, average precision, average recall, and mean object keypoint similarity (OKS) were calculated, and the mean OKS values of the model and a dental clinician were compared. Using detected keypoints, radiographic bone loss was measured and classified. No statistically significant difference was found between the modified R-CNN model and dental clinician for detecting landmarks around dental implants. The modified R-CNN model can be utilized to measure the radiographic peri-implant bone loss ratio to assess the severity of peri-implantitis.Y
Osteogenic Cell Behavior on Titanium Surfaces in Hard Tissue
It is challenging to remove dental implants once they have been inserted into the bone because it is hard to visualize the actual process of bone formation after implant installation, not to mention the cellular events that occur therein. During bone formation, contact osteogenesis occurs on roughened implant surfaces, while distance osteogenesis occurs on smooth implant surfaces. In the literature, there have been many in vitro model studies of bone formation on simulated dental implants using flattened titanium (Ti) discs; however, the purpose of this study was to identify the in vivo cell responses to the implant surfaces on actual, three-dimensional (3D) dental Ti implants and the surrounding bone in contact with such implants at the electron microscopic level using two different types of implant surfaces. In particular, the different parts of the implant structures were scrutinized. In this study, dental implants were installed in rabbit tibiae. The implants and bone were removed on day 10 and, subsequently, assessed using scanning electron microscopy (SEM), immunofluorescence microscopy (IF), transmission electron microscopy (TEM), focused ion-beam (FIB) system with Cs-corrected TEM (Cs-STEM), and confocal laser scanning microscopy (CLSM)—which were used to determine the implant surface characteristics and to identify the cells according to the different structural parts of the turned and roughened implants. The cell attachment pattern was revealed according to the different structural components of each implant surface and bone. Different cell responses to the implant surfaces and the surrounding bone were attained at an electron microscopic level in an in vivo model. These results shed light on cell behavioral patterns that occur during bone regeneration and could be a guide in the use of electron microscopy for 3D dental implants in an in vivo model
- …