275 research outputs found

    A review of mixed malaria species infections in anopheline mosquitoes

    Get PDF
    BACKGROUND: In patients with malaria mixed species infections are common and under reported. In PCR studies conducted in Asia mixed infection rates often exceed 20%. In South-East Asia, approximately one third of patients treated for falciparum malaria experience a subsequent Plasmodium vivax infection with a time interval suggesting relapse. It is uncertain whether the two infections are acquired simultaneously or separately. To determine whether mixed species infections in humans are derived from mainly from simultaneous or separate mosquito inoculations the literature on malaria species infection in wild captured anopheline mosquitoes was reviewed. METHODS: The biomedical literature was searched for studies of malaria infection and species identification in trapped wild mosquitoes and artificially infected mosquitoes. The study location and year, collection methods, mosquito species, number of specimens, parasite stage examined (oocysts or sporozoites), and the methods of parasite detection and speciation were tabulated. The entomological results in South East Asia were compared with mixed infection rates documented in patients in clinical studies. RESULTS: In total 63 studies were identified. Individual anopheline mosquitoes were examined for different malaria species in 28 of these. There were 14 studies from Africa; four with species evaluations in individual captured mosquitoes (SEICM). One study, from Ghana, identified a single mixed infection. No mixed infections were identified in Central and South America (seven studies, two SEICM). 42 studies were conducted in Asia and Oceania (11 from Thailand; 27 SEICM). The proportion of anophelines infected with Plasmodium falciparum parasites only was 0.51% (95% CI: 0.44 to 0.57%), for P. vivax only was 0.26% (95% CI: 0.21 to 0.30%), and for mixed P. falciparum and P. vivax infections was 0.036% (95% CI: 0.016 to 0.056%). The proportion of mixed infections in mosquitoes was significantly higher than expected by chance (P < 0.001), but was one fifth of that sufficient to explain the high rates of clinical mixed infections by simultaneous inoculation. CONCLUSIONS: There are relatively few data on mixed infection rates in mosquitoes from Africa. Mixed species malaria infections may be acquired by simultaneous inoculation of sporozoites from multiply infected anopheline mosquitoes but this is relatively unusual. In South East Asia, where P. vivax infection follows P. falciparum malaria in one third of cases, the available entomological information suggests that the majority of these mixed species malaria infections are acquired from separate inoculations

    The First Plasmodium vivax Relapses of Life Are Usually Genetically Homologous

    Get PDF
    In a prospective infant cohort, 21 infants developed Plasmodium vivax malaria during their first year. Twelve of their mothers also had vivax malaria in the corresponding pregnancies or postpartum period. The genotypes of the maternal and infant infections were all different. Eight of the 12 mothers and 9 of the 21 infants had recurrent infections. Relapse parasite genotypes were different to the initial infection in 13 of 20 (65%) mothers compared with 5 of 24 (21%) infants (P = .02). The first P. vivax relapses of life are usually genetically homologous, whereas relapse in adults may result from activation of heterologous latent hypnozoites acquired from previous inoculations

    A Comparison of Two Short-Course Primaquine Regimens for the Treatment and Radical Cure of Plasmodium vivax Malaria in Thailand

    Get PDF
    Thai adult males (N = 85) with acute Plasmodium vivax malaria and normal glucose-6-phosphate dehydrogenase screening were randomized to receive 30 mg or 60 mg primaquine daily for 7 days (N = 43 and 42, respectively). The regimens were well tolerated and all patients recovered fully. Median fever clearance (47 hours; range 4 to 130 hours), mean ± SD parasite clearance times (87.7 ± 25.3 hours), gametocyte clearance, and adverse effects were similar in the 2 groups. Two patients, 1 from each group, had a 30% reduction in hematocrit. The cumulative 28 day relapse rate (95% confidence interval) by Kaplan Meier survival analysis was 29% (16–49%) in the 30 mg group compared with 7% (2–24%) in the 60 mg group; P = 0.027. Comparison with previous data obtained at this same site suggests that the recurrences comprised approximately 17% recrudescences and 12% relapses in the 30 mg/day group compared with 3% recrudescences and 4% relapses in the 60 mg/day group. These data suggest that the dose-response relationships for primaquine's asexual stage and hypnozoitocidal activities in-vivo are different. A 1 week course of primaquine 60 mg daily is an effective treatment of vivax malaria in this region

    Combined effects of double mutations on catalytic activity and structural stability contribute to clinical manifestations of glucose-6-phosphate dehydrogenase deficiency

    Get PDF
    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy in humans, affecting ~ 500 million worldwide. A detailed study of the structural stability and catalytic activity of G6PD variants is required to understand how different mutations cause varying degrees of enzyme deficiency, reflecting the response of G6PD variants to oxidative stress. Furthermore, for G6PD double variants, investigating how two mutations jointly cause severe enzyme deficiency is important. Here, we characterized the functional and structural properties of nine G6PD variants: G6PD Gaohe, G6PD Mahidol, G6PD Shoklo, G6PD Canton, G6PD Kaiping, G6PD Gaohe + Kaiping, G6PD Mahidol + Canton, G6PD Mahidol + Kaiping and G6PD Canton + Kaiping. All variants were less catalytically active and structurally stable than the wild type enzyme, with G6PD double mutations having a greater impact than single mutations. G6PD Shoklo and G6PD Canton + Kaiping were the least catalytically active single and double variants, respectively. The combined effects of two mutations were observed, with the Canton mutation reducing structural stability and the Kaiping mutation increasing it in the double mutations. Severe enzyme deficiency in the double mutants was mainly determined by the trade-off between protein stability and catalytic activity. Additionally, it was demonstrated that AG1, a G6PD activator, only marginally increased G6PD enzymatic activity and stability

    Computational analysis of binding between malarial dihydrofolate reductases and anti-folates

    Get PDF
    BACKGROUND: Plasmodium falciparum readily develops resistance to the anti-folates pyrimethamine and proguanil via a characteristic set of mutations in the dihydrofolate reductase (PfDHFR) gene that leads to reduced competitive drug binding at the enzyme's active site. Analogous mutations can be found in the DHFR gene in isolates of Plasmodium vivax (PvDHFR) although anti-folates have not been widely used for the treatment of this infection. Here the interactions between DHFR inhibitors and modelled structures of the DHFR enzymes of Plasmodium malariae (PmDHFR) and Plasmodium ovale (PoDHFR) are described, along with an investigation of the effect of recently reported mutations within PmDHFR. METHODS: DHFR models for PmDHFR and PoDHFR were constructed using the solved PfDHFR-TS and PvDHFR structures respectively as templates. The modelled structures were docked with three DHFR inhibitors as ligands and more detailed interactions were explored via simulation of molecular dynamics. RESULTS: Highly accurate models were obtained containing sets of residues that mediate ligand binding which are highly comparable to those mediating binding in known crystal structures. Within this set, there were differences in the relative contribution of individual residues to inhibitor binding. Modelling of PmDHFR mutant sequences revealed that PmDHFR I170M was associated with a significant reduction in binding energy to all DHFR inhibitors studied, while the other predicted resistance mutations had lesser or no effects on ligand binding. CONCLUSIONS: Binding of DHFR inhibitors to the active sites of all four Plasmodium enzymes is broadly similar, being determined by an analogous set of seven residues. PmDHFR mutations found in field isolates influenced inhibitor interactions to a varying extent. In the case of the isolated I170M mutation, the loss of interaction with pyrimethamine suggests that DHFR-inhibitor interactions in P. malariae are different to those seen for DHFRs from P. falciparum and P. vivax

    Practical PCR genotyping protocols for Plasmodium vivax using Pvcs and Pvmsp1

    Get PDF
    BACKGROUND: Plasmodium vivax is the second most prevalent malaria parasite affecting more than 75 million people each year, mostly in South America and Asia. In addition to major morbidity this parasite is associated with relapses and a reduction in birthweight. The emergence and spread of drug resistance in Plasmodium falciparum is a major factor in the resurgence of this parasite. P. vivax resistance to drugs has more recently emerged and monitoring the situation would be helped, as for P. falciparum, by molecular methods that can be used to characterize parasites in field studies and drug efficacy trials. METHODS: Practical PCR genotyping protocols based on polymorphic loci present in two P. vivax genetic markers, Pvcs and Pvmsp1, were developed. The methodology was evaluated using 100 P. vivax isolates collected in Thailand. RESULTS AND DISCUSSION: Analysis revealed that P. vivax populations in Thailand are highly diverse genetically, with mixed genotype infections found in 26 % of the samples (average multiplicity of infection = 1.29). A large number of distinguishable alleles were found for the two markers, 23 for Pvcs and 36 for Pvmsp1. These were generally randomly distributed amongst the isolates. A total of 68 distinct genotypes could be enumerated in the 74 isolates with a multiplicity of infection of 1. CONCLUSION: These results indicate that the genotyping protocols presented can be useful in the assessment of in vivo drug efficacy clinical trials conducted in endemic areas and for epidemiological studies of P. vivax infections

    Methotrexate Is Highly Potent Against Pyrimethamine-Resistant Plasmodium vivax

    Get PDF
    Resistance of vivax malaria to treatment with antifolates, such as pyrimethamine (Pyr), is spreading as mutations in the dihydrofolatereductase (dhfr) genes are selected and disseminated. We tested the antitumor drug methotrexate (MTX), a potent competitive inhibitor of dhfr, against 11 Plasmodium vivax isolates ex vivo, 10 of which had multiple dhfr mutations associated with Pyr resistance. Despite high-grade resistance to Pyr (median 50% inhibitory concentration [IC50], 13,345 nM), these parasites were all highly susceptible to MTX (median IC50, 2.6 nM). Given its potency against Pyr-resistant P. vivax, the antimalarial potential of MTX deserves further investigation

    Directly-observed therapy (DOT) for the radical 14-day primaquine treatment of Plasmodium vivax malaria on the Thai-Myanmar border

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Plasmodium vivax </it>has a dormant hepatic stage, called the hypnozoite, which can cause relapse months after the initial attack. For 50 years, primaquine has been used as a hypnozoitocide to radically cure <it>P. vivax </it>infection, but major concerns remain regarding the side-effects of the drug and adherence to the 14-day regimen. This study examined the effectiveness of using the directly-observed therapy (DOT) method for the radical treatment of <it>P. vivax </it>malaria infection, to prevent reappearance of the parasite within the 90-day follow-up period. Other potential risk factors for the reappearance of <it>P. vivax </it>were also explored.</p> <p>Methods</p> <p>A randomized trial was conducted from May 2007 to January 2009 in a low malaria transmission area along the Thai-Myanmar border. Patients aged ≥ 3 years diagnosed with <it>P. vivax </it>by microscopy, were recruited. All patients were treated with the national standard regimen of chloroquine for three days followed by primaquine for 14 days. Patients were randomized to receive DOT or self-administered therapy (SAT). All patients were followed for three months to check for any reappearance of <it>P. vivax</it>.</p> <p>Results</p> <p>Of the 216 patients enrolled, 109 were randomized to DOT and 107 to SAT. All patients recovered without serious adverse effects. The vivax reappearance rate was significantly lower in the DOT group than the SAT group (3.4/10,000 person-days vs. 13.5/10,000 person-days, <it>p </it>= 0.021). Factors related to the reappearance of vivax malaria included inadequate total primaquine dosage received (< 2.75 mg/kg), duration of fever ≤ 2 days before initiation of treatment, parasite count on admission ≥ 10,000/µl, multiple <it>P. vivax</it>-genotype infection, and presence of <it>P. falciparum </it>infection during the follow-up period.</p> <p>Conclusions</p> <p>Adherence to the 14-day primaquine regimen is important for the radical cure of <it>P. vivax </it>malaria infection. Implementation of DOT reduces the reappearance rate of the parasite, and may subsequently decrease <it>P. vivax </it>transmission in the area.</p
    corecore