1,262 research outputs found

    Tunneling into fractional quantum Hall liquids

    Full text link
    Motivated by the recent experiment by Grayson et.al., we investigate a non-ohmic current-voltage characteristics for the tunneling into fractional quantum Hall liquids. We give a possible explanation for the experiment in terms of the chiral Tomonaga-Luttinger liquid theory. We study the interaction between the charge and neutral modes, and found that the leading order correction to the exponent α\alpha (IVα)(I\sim V^\alpha) is of the order of ϵ\sqrt{\epsilon} (ϵ=vn/vc)(\epsilon=v_n/v_c), which reduces the exponent α\alpha. We suggest that it could explain the systematic discrepancy between the observed exponents and the exact α=1/ν\alpha =1/\nu dependence.Comment: Latex, 5 page

    Full counting statistics for transport through a molecular quantum dot magnet

    Full text link
    Full counting statistics (FCS) for the transport through a molecular quantum dot magnet is studied theoretically in the incoherent tunneling regime. We consider a model describing a single-level quantum dot, magnetically coupled to an additional local spin, the latter representing the total molecular spin s. We also assume that the system is in the strong Coulomb blockade regime, i.e., double occupancy on the dot is forbidden. The master equation approach to FCS introduced in Ref. [12] is applied to derive a generating function yielding the FCS of charge and current. In the master equation approach, Clebsch-Gordan coefficients appear in the transition probabilities, whereas the derivation of generating function reduces to solving the eigenvalue problem of a modified master equation with counting fields. To be more specific, one needs only the eigenstate which collapses smoothly to the zero-eigenvalue stationary state in the limit of vanishing counting fields. We discovered that in our problem with arbitrary spin s, some quartic relations among Clebsch-Gordan coefficients allow us to identify the desired eigenspace without solving the whole problem. Thus we find analytically the FCS generating function in the following two cases: i) both spin sectors lying in the bias window, ii) only one of such spin sectors lying in the bias window. Based on the obtained analytic expressions, we also developed a numerical analysis in order to perform a similar contour-plot of the joint charge-current distribution function, which have recently been introduced in Ref. [13], here in the case of molecular quantum dot magnet problem.Comment: 17 pages, 5 figure

    Synergic Extraction of Rare Earth Elements with Thenoyltrifluoroacetone and Neutral Bidentate Ligands

    Get PDF
    開始ページ、終了ページ: 冊子体のページ付

    Discontinuous Transition from a Real Bound State to Virtual Bound State in a Mixed-Valence State of SmS

    Full text link
    Golden SmS is a paramagnetic, mixed-valence system with a pseudogap. With increasing pressure across a critical pressure Pc, the system undergoes a discontinuous transition into a metallic, anti-ferromagnetically ordered state. By using a combination of thermodynamic, transport, and magnetic measurements, we show that the pseudogap results from the formation of a local bound state with spin singlet. We further argue that the transition Pc is regarded as a transition from an insulating electron-hole gas to a Kondo metal, i.e., from a spatially bound state to a Kondo virtually bound state between 4f and conduction electrons.Comment: 5 pages, 5 figure

    Spin Berry phase in the Fermi arc states

    Get PDF
    Unusual electronic property of a Weyl semi-metallic nanowire is revealed. Its band dispersion exhibits multiple subbands of partially flat dispersion, originating from the Fermi arc states. Remarkably, the lowest energy flat subbands bear a finite size energy gap, implying that electrons in the Fermi arc surface states are susceptible of the spin Berry phase. This is shown to be a consequence of spin-to-surface locking in the surface electronic states. We verify this behavior and the existence of spin Berry phase in the low-energy effective theory of Fermi arc surface states on a cylindrical nanowire by deriving the latter from a bulk Weyl Hamiltonian. We point out that in any surface state exhibiting a spin Berry phase pi, a zero-energy bound state is formed along a magnetic flux tube of strength, hc/(2e). This effect is highlighted in a surfaceless bulk system pierced by a dislocation line, which shows a 1D chiral mode along the dislocation line.Comment: 9 pages, 9 figure

    A large product of cell-free translation of messenger RNA coding for corticotropin.

    Full text link

    Anomalous tunneling conductances of a spin singlet \nu=2/3 edge states: Interplay of Zeeman splitting and Long Range Coulomb Interaction

    Full text link
    The point contact tunneling conductance between edges of the spin singlet ν=2/3,K^=(3/3/0)\nu=2/3,\hat{K}=(3/3/0) quantum Hall states is studied both in the quasiparticle tunneling picture and in the electron tunneling picture. Due to the interplay of Zeeman splitting and the long range Coulomb interaction between edges of opposite chirality novel spin excitations emerge, and their effect is characterized by anomalous exponents of the charge and spin tunneling conductances in various temperature ranges. Depending on the kinds of scatterings at the point contact and the tunneling mechanism the anomalous interaction in spin sector may enhance or suppress the tunneling conductances. The effects of novel spin excitation are also relevant to the recent NMR experiments on quantum Hall edges.Comment: Revtex File, 7 pages: To be published in Physical Reviews

    Suppression of the soybean cyst nematode, Heterodera glycines, by short-term field cultivation and soil incorporation of mung bean.

    Get PDF
    © Koninklijke Brill NV, Leiden, 2021. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1163/15685411-bja10042Our previous study using pots reported that short-term growth of mung bean (Vigna radiata) may be useful to decrease the density of the soybean cyst nematode (SCN), Heterodera glycines, in soil. The objective of this study was to determine whether short-term growth of mung bean and its incorporation by ploughing decreased SCN density in infested fields. Firstly, we did pot experiments to evaluate the optimum temperature and moisture for hatching in soil. SCN hatching was stimulated at 25 and 30°C and not at 20°C; however, it was stimulated at alternating temperature conditions between 20 and 25°C. Soil moisture levels with pF 2.76 or less were required to stimulate SCN hatch in soil. Field experiments were done in Saitama, Kanagawa and Nara Prefectures, Japan. SCN density was reduced by nearly half even in control plots, in which mung bean was not cultivated and ploughed, in Saitama and Nara Prefectures. However, SCN density was reduced by nearly 80% or more in the three Prefectures, except for one plot in Kanagawa, and the soil temperature and moisture conditions were kept at around 20-30°C and at <pF 2.8. Increase in yield of green soybean by SCN control was estimated at 350 kg (1000 m)−2. Overall, the present study revealed that short-term field cultivation of mung bean and ploughing was a profitable method to decrease SCN density in infested fields and thereby to increase yield of green soybean.Peer reviewedFinal Accepted Versio
    corecore