471 research outputs found

    Identification of the novel localization of tenascinX in the monkey choroid plexus and comparison with the mouse

    Get PDF
    Tenascin-X (Tn-X) belongs to the tenascin family of glycoproteins and has been reported to be significantly associated with schizophrenia in a single nucleotide polymorphism analysis in humans. This finding indicates an important role of Tn-X in the central nervous system (CNS). However, details of Tn-X localization are not clear in the primate CNS. Using immunohistochemical techniques, we found novel localizations of Tn-X in the interstitial connective tissue and around blood vessels in the choroid plexus (CP) in macaque monkeys. To verify the reliability of Tn-X localization, we compared the Tn-X localization with the tenascin-C (Tn-C) localization in corresponding regions using neighbouring sections. Localization of Tn-C was not observed in CP. This result indicated consistently restricted localization of Tn-X in CP. Comparative investigations using mouse tissues showed equivalent results. Our observations provide possible insight into specific roles of Tn-X in CP for mammalian CNS function

    Magnetoresistance in Disordered Graphene: The Role of Pseudospin and Dimensionality Effects Unraveled

    Get PDF
    We report a theoretical low-field magnetotransport study unveiling the effect of pseudospin in realistic models of weakly disordered graphene-based materials. Using an efficient Kubo computational method, and simulating the effect of charges trapped in the oxide, different magnetoconductance fingerprints are numerically obtained in system sizes as large as 0.3 micronmeter squared, containing tens of millions of carbon atoms. In two-dimensional graphene, a strong valley mixing is found to irreparably yield a positive magnetoconductance (weak localization), whereas crossovers from positive to a negative magnetoconductance (weak antilocalization) are obtained by reducing disorder strength down to the ballistic limit. In sharp contrast, graphene nanoribbons with lateral size as large as 10nm show no sign of weak antilocalization, even for very small disorder strength. Our results rationalize the emergence of a complex phase diagram of magnetoconductance fingerprints, shedding some new light on the microscopical origin of pseudospin effects.Comment: 8 pages, 5 figure

    Full counting statistics for transport through a molecular quantum dot magnet

    Full text link
    Full counting statistics (FCS) for the transport through a molecular quantum dot magnet is studied theoretically in the incoherent tunneling regime. We consider a model describing a single-level quantum dot, magnetically coupled to an additional local spin, the latter representing the total molecular spin s. We also assume that the system is in the strong Coulomb blockade regime, i.e., double occupancy on the dot is forbidden. The master equation approach to FCS introduced in Ref. [12] is applied to derive a generating function yielding the FCS of charge and current. In the master equation approach, Clebsch-Gordan coefficients appear in the transition probabilities, whereas the derivation of generating function reduces to solving the eigenvalue problem of a modified master equation with counting fields. To be more specific, one needs only the eigenstate which collapses smoothly to the zero-eigenvalue stationary state in the limit of vanishing counting fields. We discovered that in our problem with arbitrary spin s, some quartic relations among Clebsch-Gordan coefficients allow us to identify the desired eigenspace without solving the whole problem. Thus we find analytically the FCS generating function in the following two cases: i) both spin sectors lying in the bias window, ii) only one of such spin sectors lying in the bias window. Based on the obtained analytic expressions, we also developed a numerical analysis in order to perform a similar contour-plot of the joint charge-current distribution function, which have recently been introduced in Ref. [13], here in the case of molecular quantum dot magnet problem.Comment: 17 pages, 5 figure

    Anomalous tunneling conductances of a spin singlet \nu=2/3 edge states: Interplay of Zeeman splitting and Long Range Coulomb Interaction

    Full text link
    The point contact tunneling conductance between edges of the spin singlet ν=2/3,K^=(3/3/0)\nu=2/3,\hat{K}=(3/3/0) quantum Hall states is studied both in the quasiparticle tunneling picture and in the electron tunneling picture. Due to the interplay of Zeeman splitting and the long range Coulomb interaction between edges of opposite chirality novel spin excitations emerge, and their effect is characterized by anomalous exponents of the charge and spin tunneling conductances in various temperature ranges. Depending on the kinds of scatterings at the point contact and the tunneling mechanism the anomalous interaction in spin sector may enhance or suppress the tunneling conductances. The effects of novel spin excitation are also relevant to the recent NMR experiments on quantum Hall edges.Comment: Revtex File, 7 pages: To be published in Physical Reviews

    Theory of suppressed shot-noise at ν=2/(2p+χ)\nu=2/(2p+\chi)

    Full text link
    We study the edge states of fractional quantum Hall liquid at bulk filling factor ν=2/(2p+χ)\nu=2/(2p+\chi) with pp being an even integer and χ=±1\chi=\pm 1. We describe the transition from a conductance plateau G=νG0=νe2/hG=\nu G_0=\nu e^2/h to another plateau G=G0/(p+χ)G=G_0/(p+\chi) in terms of chiral Tomonaga-Luttinger liquid theory. It is found that the fractional charge qq which appears in the classical shot-noise formula SI=2qS_{I}=2q is q=e/(2p+χ)q=e/(2p+\chi) on the conductance plateau at G=νG0G=\nu G_0 whereas on the plateau at G=G0/(p+χ)G=G_0/(p+\chi) it is given by q=e/(p+χ)q=e/(p+\chi). For p=2p=2 and χ=1\chi=-1 an alternative hierarchy constructions is also discussed to explain the suppressed shot-noise experiment at bulk filling factor ν=2/3\nu=2/3.Comment: Typos in Eqs. (5-7) correcte

    Strong quasi-particle tunneling study in the paired quantum Hall states

    Full text link
    The quasi-particle tunneling phenomena in the paired fractional quantum Hall states are studied. A single point-contact system is first considered. Because of relevancy of the quasi-particle tunneling term, the strong tunneling regime should be investigated. Using the instanton method it is shown that the strong quasi-particle tunneling regime is described as the weak electron tunneling regime effectively. Expanding to the network model the paired quantum Hall liquid to insulator transition is discussed

    Theory of non-equilibrium noise in general multi-terminal superconducting hydrid devices: application to multiple Cooper pair resonances

    Full text link
    We consider the out-of-equilibrium behavior of a general class of mesoscopic devices composed of several superconducting or/and normal metal leads separated by quantum dots. Starting from a microscopic Hamiltonian description, we provide a non-perturbative approach to quantum electronic transport in the tunneling amplitudes between dots and leads: using the equivalent of a path integral formulation, the lead degrees of freedom are integrated out in order to compute both the current and the current correlations (noise) in this class of systems, in terms of the dressed Green's function matrix of the quantum dots. In order to illustrate the efficiency of this formalism, we apply our results to the "all superconducting Cooper pair beam splitter", a device composed of three superconducting leads connected via two quantum dots, where crossed Andreev reflection operates Cooper pair splitting. Commensurate voltage differences between the three leads allow to obtain expressions for the current and noise as a function of the Keldysh Nambu Floquet dressed Green's function of the dot system. This voltage configuration allows the occurrence of non-local processes involving multiple Cooper pairs which ultimately lead to the presence of non-zero DC currents in an out-of-equilibrium situation. We investigate in details the results for the noise obtained numerically in the specific case of opposite voltages, where the transport properties are dominated by the so called "quartet processes", involving the coherent exchange of two Cooper pairs among all three superconducting terminals. We show that these processes are noiseless in the non-resonant case, and that this property is also observed for other voltage configurations. When the dots are in a resonant regime, the noise characteristics change qualitatively, with the appearance of giant Fano factors.Comment: 18 pages, 12 figure
    corecore