656 research outputs found

    Novel multiple-band superconductor SrPt2As2

    Full text link
    We present LDA calculated electronic structure of recently discovered superconductor SrPt2As2 with Tc=5.2K. Despite its chemical composition and crystal structure are somehow similar to FeAs-based high-temperature superconductors, the electronic structure of SrPt2As2 is very much different. Crystal structure is orthorhombic (or tetragonal if idealized) and has layered nature with alternating PtAs4 and AsPt4 tetrahedra slabs sandwiched with Sr ions. The Fermi level is crossed by Pt-5d states with rather strong admixture of As-4p states. Fermi surface of SrPt2As2 is essentially three dimensional, with complicated sheets corresponding to multiple bands. We compare SrPt2As2 with 1111 and 122 representatives of FeAs-class of superconductors, as well as with isovalent (Ba,Sr)Ni2As2 superconductors. Brief discussion of superconductivity in SrPt2As2 is also presented.Comment: 5 pages, 4 figure

    Characterization of PLD grown WO3 thin films for gas sensing

    Get PDF
    Tungsten trioxide (WO3) thin films were grown by pulsed laser deposition (PLD) with the aim to be applied in gas sensors. The films were studied by atomic force microscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and profilometry. To study the gas sensing behavior of these WO3 films, they were deposited on quartz resonators and the quartz crystal microbalance (QCM) method was applied to analyze their gas sensitivity. Synthesis of tetragonal-WO3 films starting from a target with predominantly monoclinic WO3 phase was observed. The films deposited at 300 degrees C presented a surface topology favorable for the sorption properties, consisting of a film matrix with protruding craters/cavities. QCM prototype sensors with such films were tested for NO2 sensing. The PLD grown WO3 thin films show good sensitivity and fast reaction at room temperature, even in as-deposited state. With the presented technology, the manufacturing of QCM gas sensors is simple, fast and cost-effective, and it is also suitable for energy-effective portable equipment for on-line monitoring of environmental changes. (C) 2017 Elsevier B.V. All rights reserved

    Shape Analysis of the Level Spacing Distribution around the Metal Insulator Transition in the Three Dimensional Anderson Model

    Full text link
    We present a new method for the numerical treatment of second order phase transitions using the level spacing distribution function P(s)P(s). We show that the quantities introduced originally for the shape analysis of eigenvectors can be properly applied for the description of the eigenvalues as well. The position of the metal--insulator transition (MIT) of the three dimensional Anderson model and the critical exponent are evaluated. The shape analysis of P(s)P(s) obtained numerically shows that near the MIT P(s)P(s) is clearly different from both the Brody distribution and from Izrailev's formula, and the best description is of the form P(s)=c1sexp(c2s1+β)P(s)=c_1\,s\exp(-c_2\,s^{1+\beta}), with β0.2\beta\approx 0.2. This is in good agreement with recent analytical results.Comment: 14 pages in plain TeX, 6 figures upon reques

    Comment on ``Critical Behavior in Disordered Quantum Systems Modified by Broken Time--Reversal Symmetry''

    Full text link
    In a recent Letter [Phys. Rev. Lett. 80, 1003 (1998)] Hussein and Pato employed the maximum entropy principle (MEP) in order to derive interpolating ensembles between any pair of universality classes in random matrix theory. They apply their formalism also to the transition from random matrix to Poisson statistics of spectra that is observed for the case of the Anderson-type metal-insulator transition. We point out the problems with the latter procedure.Comment: 1 page in PS, to appear in PRL Sept. 2

    Shift work and vascular events: Systematic review and meta-analysis.

    Get PDF
    OBJECTIVE: To synthesise the association of shift work with major vascular events as reported in the literature. DATA SOURCES: Systematic searches of major bibliographic databases, contact with experts in the field, and review of reference lists of primary articles, review papers, and guidelines. STUDY SELECTION: Observational studies that reported risk ratios for vascular morbidity, vascular mortality, or all cause mortality in relation to shift work were included; control groups could be non-shift ( day ) workers or the general population. DATA EXTRACTION: Study quality was assessed with the Downs and Black scale for observational studies. The three primary outcomes were myocardial infarction, ischaemic stroke, and any coronary event. Heterogeneity was measured with the I(2) statistic and computed random effects models. RESULTS: 34 studies in 2,011,935 people were identified. Shift work was associated with myocardial infarction (risk ratio 1.23, 95% confidence interval 1.15 to 1.31; I(2)=0) and ischaemic stroke (1.05, 1.01 to 1.09; I(2)=0). Coronary events were also increased (risk ratio 1.24, 1.10 to 1.39), albeit with significant heterogeneity across studies (I(2)=85%). Pooled risk ratios were significant for both unadjusted analyses and analyses adjusted for risk factors. All shift work schedules with the exception of evening shifts were associated with a statistically higher risk of coronary events. Shift work was not associated with increased rates of mortality (whether vascular cause specific or overall). Presence or absence of adjustment for smoking and socioeconomic status was not a source of heterogeneity in the primary studies. 6598 myocardial infarctions, 17,359 coronary events, and 1854 ischaemic strokes occurred. On the basis of the Canadian prevalence of shift work of 32.8%, the population attributable risks related to shift work were 7.0% for myocardial infarction, 7.3% for all coronary events, and 1.6% for ischaemic stroke. CONCLUSIONS: Shift work is associated with vascular events, which may have implications for public policy and occupational medicine

    Phenotyping shows improved physiological traits and seed yield of transgenic wheat plants expressing the alfalfa aldose reductase under permanent drought stress

    Get PDF
    Members of the aldo-keto reductase family including aldose reductases are involved in antioxidant defense by metabolizing a wide range of lipid peroxidation-derived cytotoxic compounds. Therefore, we produced transgenic wheat genotypes over-expressing the cDNA of alfalfa aldose reductase gene. These plants consequently exhibit 1.5-4.3 times higher detoxification activity for the aldehyde substrate. Permanent drought stress was generated in the greenhouse by growing wheat plants in soil with 20 % water capacity. The control and stressed plants were monitored by a semi automatic phenotyping platform providing computer-controlled watering, digital and thermal imaging. Calculation of biomass values was based on the correlation (R2 = 0.7556) between fresh weight and green pixel-based shoot surface area. The green biomass production by plants of the three transgenic lines was 12-26-41 % higher than the non-transgenic plants' grown under water limitation. Thermal imaging of stressed non-transgenic plants indicated an elevation in the leaf temperature. The thermal status of transformants was similar at both normal and suboptimal water regime. In drought, the transgenic plants used more water during the growing season. The described phenotyping platform provided a comprehensive data set demonstrating the improved physiological condition of the drought stressed transgenic wheat plants in the vegetative growth phase. In soil with reduced water capacity two transgenic genotypes showed higher seed weight per plant than the control non-transgenic one. Limitation of greenhouse-based phenotyping in analysis of yield potential is discussed. © 2013 The Author(s)

    Coexistence of Superconductivity and Charge Density Wave in SrPt2As2

    Full text link
    SrPt2As2 is a novel arsenide superconductor, which crystallizes in the CaBe2Ge2-type structure as a different polymorphic form of the ThCr2Si2-type structure. SrPt2As2 exhibits a charge-density-wave (CDW) ordering at about 470 K and enters into a superconducting state at Tc = 5.2 K. The coexistence of superconductivity and CDW refers to Peierls instability with a moderately strong electron-phonon interaction. Thus SrPt2As2 can be viewed as a nonmagnetic analog of iron-based superconductors, such as doped BaFe2As2, in which superconductivity emerges in close proximity to spin-density-wave ordering.Comment: 4 pages, 5 figure

    Peculiarities of the Weyl - Wigner - Moyal formalism for scalar charged particles

    Get PDF
    A description of scalar charged particles, based on the Feshbach-Villars formalism, is proposed. Particles are described by an object that is a Wigner function in usual coordinates and momenta and a density matrix in the charge variable. It is possible to introduce the usual Wigner function for a large class of dynamical variables. Such an approach explicitly contains a measuring device frame. From our point of view it corresponds to the Copenhagen interpretation of quantum mechanics. It is shown how physical properties of such particles depend on the definition of the coordinate operator. The evolution equation for the Wigner function of a single-charge state in the classical limit coincides with the Liouville equation. Localization peculiarities manifest themselves in specific constraints on possible initial conditions.Comment: 16 pages, 2 figure

    Formation and Interaction of Membrane Tubes

    Full text link
    We show that the formation of membrane tubes (or membrane tethers), which is a crucial step in many biological processes, is highly non-trivial and involves first order shape transitions. The force exerted by an emerging tube is a non-monotonic function of its length. We point out that tubes attract each other, which eventually leads to their coalescence. We also show that detached tubes behave like semiflexible filaments with a rather short persistence length. We suggest that these properties play an important role in the formation and structure of tubular organelles.Comment: 4 pages, 3 figure
    corecore