447 research outputs found

    Anatomical and ontogenetic reassessment of the Ediacaran frond Arborea arborea and its placement within total group Eumetazoa

    Get PDF
    Organisms in possession of a frondose body plan are amongst the oldest and most enigmatic members of the soft‐bodied Ediacaran macrobiota. Appraisal of specimens from the late Ediacaran Ediacara Member of South Australia reveals that the frondose taxon Arborea arborea probably possessed a fluid‐filled holdfast disc, the size and form of which could vary within populations. Mouldic preservation of internal anatomical features provides evidence for tissue differentiation, and for bundles of tubular structures within the stalk of the organism. These structures connect in a fascicled arrangement to individual lateral branches, before dividing further into individual units housed on those branches. The observed fascicled branching arrangement, which seemingly connects individual units to the main body of the organism, is consistent with a biologically modular construction for Arborea, and raises the possibility of a colonial organization. In conjunction with morphological characters previously recognized by other authors, including apical‐basal and front‐back differentiation, we propose that to the exclusion of all alternative known possibilities, Arborea can be resolved as a total group eumetazoan

    Anatomical and ontogenetic reassessment of the Ediacaran frond Arborea arborea and its placement within total group Eumetazoa

    Get PDF
    Organisms in possession of a frondose body plan are amongst the oldest and most enigmatic members of the soft‐bodied Ediacaran macrobiota. Appraisal of specimens from the late Ediacaran Ediacara Member of South Australia reveals that the frondose taxon Arborea arborea probably possessed a fluid‐filled holdfast disc, the size and form of which could vary within populations. Mouldic preservation of internal anatomical features provides evidence for tissue differentiation, and for bundles of tubular structures within the stalk of the organism. These structures connect in a fascicled arrangement to individual lateral branches, before dividing further into individual units housed on those branches. The observed fascicled branching arrangement, which seemingly connects individual units to the main body of the organism, is consistent with a biologically modular construction for Arborea, and raises the possibility of a colonial organization. In conjunction with morphological characters previously recognized by other authors, including apical‐basal and front‐back differentiation, we propose that to the exclusion of all alternative known possibilities, Arborea can be resolved as a total group eumetazoan

    Processed Radio Frequency towards Pancreas Enhancing the Deadly Diabetes Worldwide

    Get PDF
    Diabetes is a chronic and debilitating disease, which is associated with a range of complications putting tremendous burden on medical, economic and socio-technological infrastructure globally. Yet the higher authorities of health services are facing the excruciating cumulative reasons of diabetes as a very imperative worldwide issue in the 21st century. The study aims to relook at the misapplication of the processed radio frequency that frailties in the pancreas within and around the personal body boundary area. The administered sensor data were obtained at laboratory experiments from the selected specimens on dogs and cats in light and dark environments. The study shows the frequent urine flow speed varies with sudden infection due to treated wireless sensor networks in active open eyes. The overweight and obese persons are increasingly affected in diabetes with comprehensive urinary pressure due to continuous staying at dark environment. The findings replicate the increasing tide of diabetes globally. The study also represents the difficulties of physicians to provide adequate diabetic management according to their expectancy due to insecure personal area network control unit.Dynamic sensor network is indispensable for healthcare but such network is at risk to health security due to digitalized poisoning within GPS positions. The study recommends the anti-radiation integrated system policy with user’s security alternative approach to inspire dealing with National Health Policy and Sustainable Development Goals 2030

    Influenza in Outpatient ILI Case-Patients in National Hospital-Based Surveillance, Bangladesh, 2007–2008

    Get PDF
    Recent population-based estimates in a Dhaka low-income community suggest that influenza was prevalent among children. To explore the epidemiology and seasonality of influenza throughout the country and among all age groups, we established nationally representative hospital-based surveillance necessary to guide influenza prevention and control efforts.We conducted influenza-like illness and severe acute respiratory illness sentinel surveillance in 12 hospitals across Bangladesh during May 2007–December 2008. We collected specimens from 3,699 patients, 385 (10%) which were influenza positive by real time RT-PCR. Among the sample-positive patients, 192 (51%) were type A and 188 (49%) were type B. Hemagglutinin subtyping of type A viruses detected 137 (71%) A/H1 and 55 (29%) A/H3, but no A/H5 or other novel influenza strains. The frequency of influenza cases was highest among children aged under 5 years (44%), while the proportions of laboratory confirmed cases was highest among participants aged 11–15 (18%). We applied kriging, a geo-statistical technique, to explore the spatial and temporal spread of influenza and found that, during 2008, influenza was first identified in large port cities and then gradually spread to other parts of the country. We identified a distinct influenza peak during the rainy season (May–September).Our surveillance data confirms that influenza is prevalent throughout Bangladesh, affecting a wide range of ages and causing considerable morbidity and hospital care. A unimodal influenza seasonality may allow Bangladesh to time annual influenza prevention messages and vaccination campaigns to reduce the national influenza burden. To scale-up such national interventions, we need to quantify the national rates of influenza and the economic burden associated with this disease through further studies

    Using AMANHI-ACT cohorts for external validation of Iowa new-born metabolic profiles based models for postnatal gestational age estimation.

    Get PDF
    BACKGROUND: Globally, 15 million infants are born preterm and another 23.2 million infants are born small for gestational age (SGA). Determining burden of preterm and SGA births, is essential for effective planning, modification of health policies and targeting interventions for reducing these outcomes for which accurate estimation of gestational age (GA) is crucial. Early pregnancy ultrasound measurements, last menstrual period and post-natal neonatal examinations have proven to be not feasible or inaccurate. Proposed algorithms for GA estimation in western populations, based on routine new-born screening, though promising, lack validation in developing country settings. We evaluated the hypothesis that models developed in USA, also predicted GA in cohorts of South Asia (575) and Sub-Saharan Africa (736) with same precision. METHODS: Dried heel prick blood spots collected 24-72 hours after birth from 1311 new-borns, were analysed for standard metabolic screen. Regression algorithm based, GA estimates were computed from metabolic data and compared to first trimester ultrasound validated, GA estimates (gold standard). RESULTS: Overall Algorithm (metabolites + birthweight) estimated GA to within an average deviation of 1.5 weeks. The estimated GA was within the gold standard estimate by 1 and 2 weeks for 70.5% and 90.1% new-borns respectively. Inclusion of birthweight in the metabolites model improved discriminatory ability of this method, and showed promise in identifying preterm births. Receiver operating characteristic (ROC) curve analysis estimated an area under curve of 0.86 (conservative bootstrap 95% confidence interval (CI) = 0.83 to 0.89); P < 0.001) and Youden Index of 0.58 (95% CI = 0.51 to 0.64) with a corresponding sensitivity of 80.7% and specificity of 77.6%. CONCLUSION: Metabolic gestational age dating offers a novel means for accurate population-level gestational age estimates in LMIC settings and help preterm birth surveillance initiatives. Further research should focus on use of machine learning and newer analytic methods broader than conventional metabolic screen analytes, enabling incorporation of region-specific analytes and cord blood metabolic profiles models predicting gestational age accurately

    Machine learning prediction of gestational age from metabolic screening markers resistant to ambient temperature transportation: Facilitating use of this technology in low resource settings of South Asia and East Africa.

    Get PDF
    BACKGROUND: Knowledge of gestational age is critical for guiding preterm neonatal care. In the last decade, metabolic gestational dating approaches emerged in response to a global health need; because in most of the developing world, accurate antenatal gestational age estimates are not feasible. These methods initially developed in North America have now been externally validated in two studies in developing countries, however, require shipment of samples at sub-zero temperature. METHODS: A subset of 330 pairs of heel prick dried blood spot samples were shipped on dry ice and in ambient temperature from field sites in Tanzania, Bangladesh and Pakistan to laboratory in Iowa (USA). We evaluated impact on recovery of analytes of shipment temperature, developed and evaluated models for predicting gestational age using a limited set of metabolic screening analytes after excluding 17 analytes that were impacted by shipment conditions of a total of 44 analytes. RESULTS: With the machine learning model using all the analytes, samples shipped in dry ice yielded a Root Mean Square Error (RMSE) of 1.19 weeks compared to 1.58 weeks for samples shipped in ambient temperature. Out of the 44 screening analytes, recovery of 17 analytes was significantly different between the two shipment methods and these were excluded from further machine learning model development. The final model, restricted to stable analytes provided a RMSE of 1.24 (95% confidence interval (CI) = 1.10-1.37) weeks for samples shipped on dry ice and RMSE of 1.28 (95% CI = 1.15-1.39) for samples shipped at ambient temperature. Analysis for discriminating preterm births (gestational age <37 weeks), yielded an area under curve (AUC) of 0.76 (95% CI = 0.71-0.81) for samples shipped on dry ice and AUC of 0.73 (95% CI = 0.67-0.78) for samples shipped in ambient temperature. CONCLUSIONS: In this study, we demonstrate that machine learning algorithms developed using a sub-set of newborn screening analytes which are not sensitive to shipment at ambient temperature, can accurately provide estimates of gestational age comparable to those from published regression models from North America using all analytes. If validated in larger samples especially with more newborns <34 weeks, this technology could substantially facilitate implementation in LMICs

    Multiomics Characterization of Preterm Birth in Low- and Middle-Income Countries.

    Get PDF
    Importance: Worldwide, preterm birth (PTB) is the single largest cause of deaths in the perinatal and neonatal period and is associated with increased morbidity in young children. The cause of PTB is multifactorial, and the development of generalizable biological models may enable early detection and guide therapeutic studies. Objective: To investigate the ability of transcriptomics and proteomics profiling of plasma and metabolomics analysis of urine to identify early biological measurements associated with PTB. Design, Setting, and Participants: This diagnostic/prognostic study analyzed plasma and urine samples collected from May 2014 to June 2017 from pregnant women in 5 biorepository cohorts in low- and middle-income countries (LMICs; ie, Matlab, Bangladesh; Lusaka, Zambia; Sylhet, Bangladesh; Karachi, Pakistan; and Pemba, Tanzania). These cohorts were established to study maternal and fetal outcomes and were supported by the Alliance for Maternal and Newborn Health Improvement and the Global Alliance to Prevent Prematurity and Stillbirth biorepositories. Data were analyzed from December 2018 to July 2019. Exposures: Blood and urine specimens that were collected early during pregnancy (median sampling time of 13.6 weeks of gestation, according to ultrasonography) were processed, stored, and shipped to the laboratories under uniform protocols. Plasma samples were assayed for targeted measurement of proteins and untargeted cell-free ribonucleic acid profiling; urine samples were assayed for metabolites. Main Outcomes and Measures: The PTB phenotype was defined as the delivery of a live infant before completing 37 weeks of gestation. Results: Of the 81 pregnant women included in this study, 39 had PTBs (48.1%) and 42 had term pregnancies (51.9%) (mean [SD] age of 24.8 [5.3] years). Univariate analysis demonstrated functional biological differences across the 5 cohorts. A cohort-adjusted machine learning algorithm was applied to each biological data set, and then a higher-level machine learning modeling combined the results into a final integrative model. The integrated model was more accurate, with an area under the receiver operating characteristic curve (AUROC) of 0.83 (95% CI, 0.72-0.91) compared with the models derived for each independent biological modality (transcriptomics AUROC, 0.73 [95% CI, 0.61-0.83]; metabolomics AUROC, 0.59 [95% CI, 0.47-0.72]; and proteomics AUROC, 0.75 [95% CI, 0.64-0.85]). Primary features associated with PTB included an inflammatory module as well as a metabolomic module measured in urine associated with the glutamine and glutamate metabolism and valine, leucine, and isoleucine biosynthesis pathways. Conclusions and Relevance: This study found that, in LMICs and high PTB settings, major biological adaptations during term pregnancy follow a generalizable model and the predictive accuracy for PTB was augmented by combining various omics data sets, suggesting that PTB is a condition that manifests within multiple biological systems. These data sets, with machine learning partnerships, may be a key step in developing valuable predictive tests and intervention candidates for preventing PTB

    Development and validation of a simplified algorithm for neonatal gestational age assessment - protocol for the Alliance for Maternal Newborn Health Improvement (AMANHI) prospective cohort study.

    Get PDF
    OBJECTIVE: The objective of the Alliance for Maternal and Newborn Health Improvement (AMANHI) gestational age study is to develop and validate a programmatically feasible and simple approach to accurately assess gestational age of babies after they are born. The study will provide accurate, population-based rates of preterm birth in different settings and quantify the risks of neonatal mortality and morbidity by gestational age and birth weight in five South Asian and sub-Saharan African sites. METHODS: This study used on-going population-based cohort studies to recruit pregnant women early in pregnancy (<20 weeks) for a dating ultrasound scan. Implementation is harmonised across sites in Ghana, Tanzania, Zambia, Bangladesh and Pakistan with uniform protocols and standard operating procedures. Women whose pregnancies are confirmed to be between 8 to 19 completed weeks of gestation are enrolled into the study. These women are followed up to collect socio-demographic and morbidity data during the pregnancy. When they deliver, trained research assistants visit women within 72 hours to assess the baby for gestational maturity. They assess for neuromuscular and physical characteristics selected from the Ballard and Dubowitz maturation assessment scales. They also measure newborn anthropometry and assess feeding maturity of the babies. Computer machine learning techniques will be used to identify the most parsimonious group of signs that correctly predict gestational age compared to the early ultrasound date (the gold standard). This gestational age will be used to categorize babies into term, late preterm and early preterm groups. Further, the ultrasound-based gestational age will be used to calculate population-based rates of preterm birth. IMPORTANCE OF THE STUDY: The AMANHI gestational age study will make substantial contribution to improve identification of preterm babies by frontline health workers in low- and middle- income countries using simple evaluations. The study will provide accurate preterm birth estimates. This new information will be crucial to planning and delivery of interventions for improving preterm birth outcomes, particularly in South Asia and sub-Saharan Africa
    corecore