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Background Globally, 15 million infants are born preterm and 
another 23.2 million infants are born small for gestational age 
(SGA). Determining burden of preterm and SGA births, is essen-
tial for effective planning, modification of health policies and tar-
geting interventions for reducing these outcomes for which accu-
rate estimation of gestational age (GA) is crucial. Early pregnancy 
ultrasound measurements, last menstrual period and post-natal 
neonatal examinations have proven to be not feasible or inaccu-
rate. Proposed algorithms for GA estimation in western popula-
tions, based on routine new-born screening, though promising, 
lack validation in developing country settings. We evaluated the 
hypothesis that models developed in USA, also predicted GA in 
cohorts of South Asia (575) and Sub-Saharan Africa (736) with 
same precision.

Methods Dried heel prick blood spots collected 24-72 hours after 
birth from 1311 new-borns, were analysed for standard metabolic 
screen. Regression algorithm based, GA estimates were computed 
from metabolic data and compared to first trimester ultrasound 
validated, GA estimates (gold standard).

Results Overall Algorithm (metabolites + birthweight) estimated 
GA to within an average deviation of 1.5 weeks. The estimated GA 
was within the gold standard estimate by 1 and 2 weeks for 70.5% 
and 90.1% new-borns respectively. Inclusion of birthweight in the 
metabolites model improved discriminatory ability of this meth-
od, and showed promise in identifying preterm births. Receiver 
operating characteristic (ROC) curve analysis estimated an area 
under curve of 0.86 (conservative bootstrap 95% confidence in-
terval (CI) = 0.83 to 0.89); P < 0.001) and Youden Index of 0.58 
(95% CI = 0.51 to 0.64) with a corresponding sensitivity of 80.7% 
and specificity of 77.6%.

Conclusion Metabolic gestational age dating offers a novel means 
for accurate population-level gestational age estimates in LMIC 
settings and help preterm birth surveillance initiatives. Further re-
search should focus on use of machine learning and newer analyt-
ic methods broader than conventional metabolic screen analytes, 
enabling incorporation of region-specific analytes and cord blood 
metabolic profiles models predicting gestational age accurately.

Cite as: Sazawal S, Ryckman KK, Mittal H, Khanam R, Nisar I, Jasper E, Rahman S, Mehmood U, Das S, Bedell B, 
Chowdhury NH, Barkat A, Dutta A, Deb S, Ahmed S, Khalid F, Raqib R, Ilyas M, Nizar A, Ali SM, Manu A, Yoshida 
S, Baqui AH, Jehan F, Dhingra U, Bahl R. Using AMANHI-ACT cohorts for external validation of Iowa new-born 
metabolic profiles based models for postnatal gestational age estimation. J Glob Health 2021;11:04044.

https://creativecommons.org/licenses/by/4.0/legalcode


Sazawal et al.
V

IE
W

PO
IN

TS
PA

PE
RS

2021  •  Vol. 11  •  04044	 2 www.jogh.org •  doi: 10.7189/jogh.11.04044

Globally, 15 million infants are born preterm and approximately 1 million children die each year due to com-
plications of preterm birth; of which 81% belong to low resource settings in Asia and Africa [1-3]. About 23.3 
million infants (19.3% of live births) are estimated to be born small for gestational age (SGA) in Low and Mid-
dle-Income Countries (LMIC). Even reducing this to 10.0% would reduce neonatal deaths by 9.2% (254 600 
deaths) [4]. In LMIC settings, estimates of gestational age (GA) at birth is central to population estimates for 
preterm and SGA births which in turn is critical to planning, policy, targeting interventions to reduce these 
outcomes, evaluation of intervention impact as well as focused care for these high-risk births [5,6].

Early pregnancy ultrasound measurements are considered to be the gold standard in determining GA, as ul-
trasound measurements during mid and late pregnancy are unreliable [7]. Obtaining an early accurate GA in 
low resource settings is challenging due to absence of ultrasound equipment and shortage of trained techni-
cians [8]. In these settings, last menstrual period (LMP) is often used for assessment of GA. Although LMP in 
high income countries has an error of only few days, it has now been shown to be highly unreliable in LMIC. 
Low prevalence of early antenatal care and hence recall problems, high rates of conception during lactation 
amenorrhea and conception immediately following long duration contraception patches contributes to this in-
accuracy [9]. Postnatal methods such as Dubowitz or Ballard assessment scales, used to estimate GA based on 
physical & neuromuscular characteristics, require trained staff and even in trained hands have low reliability 
& high interrater variability, particularly among SGA and preterm infants [10-13].

To address this felt need, recent studies have tried to use routine new-born screening metabolic markers for es-
timation of GA in developed country settings based on retrospective health services cohort analysis [6,14,15]. 
Ryckman et al. [6] developed a regression model with 88 parameters from metabolite screening data of 230 
013 new-borns in Iowa, USA. The developed model could predict GA within 1 and 2 weeks of gestation for 
78% and 95% of new-borns respectively. Wilson et al., [15] on metabolite data of 249 700 new-borns in On-
tario, Canada found that the developed model including gender and birthweight as covariates, along with me-
tabolites was able to predict GA within about 1 and 2 weeks of gestation in 66.8% and 94.9% new-borns. A 
similar study among 720 503 infants from California, USA was able to correctly classify 78.3% and 91.7% 
with 1 and 2 weeks correctly using discriminant analysis [14].

Limited evidence is currently available for validating these algorithms developed for populations in developed 
countries across different ethnicities [16] and in low resource settings [17]. Only one study currently exists 
for validation in a low resource setting, using the model developed in a Canadian population (Ontario Model) 
[15] which has been used for 487 new-borns in a prospective cohort from Bangladesh. The model in this study 
provided Root Mean Square Error (RMSE) of 1.35 weeks. An additional model which included expanded clin-
ical data with limited feasibility (ie, new-born haemoglobin peak percentages) provided RMSE of 1.07 [17]. 
Evaluating these models in LMIC settings where their use is actually of importance to global health is a priority.

Alliance for Maternal and New-born Health Improvement – All Children Thrive (AMANHI-ACT) cohorts (in 
3 LMIC – Tanzania, Pakistan and Bangladesh) provided a unique opportunity for evaluating external validity 
for this approach. In the present study, we report evaluation of the hypothesis that regression models devel-
oped at Iowa, USA [6] applied to prospective cohorts in South Asia and Sub-Saharan Africa provide valid es-
timation of postnatal GA and discrimination for preterm births.

METHODS

Study population

This validation study was conducted nested within a prospective pregnancy cohort study entitled The Alliance 
for Maternal and New-born Health Improvement (AMANHI) Bio-repository study. This study was carried out 
in three LMIC with harmonised methods/protocols to capture data on the biological determinants of adverse 
pregnancy outcomes and biological specimens were bio-banked for future analysis. Detailed methods of the 
study have been reported previously [18-20]. Briefly, trained field workers identified pregnant women by ac-
tive surveillance in the field and they were enrolled in the study before 19 weeks of gestation which was con-
firmed by ultrasonography using the fetal crown rump length (if <14 weeks gestation) [21-24] or biparietal 
diameter and femur length (if ≥14 weeks) [24,25]. All enrolled women were followed prospectively through 
pregnancy till 45-60 days post-partum. Clinical information and bio-specimens were collected at all the time 
points. Birth weight was measured within 1 hour using a standard new-born weighing scale (SECA Corpora-
tion, Columbia, MD, USA).

The All Children Thrive (ACT) extension of the AMANHI cohorts added follow up of new-borns until 3 years 
of age. As part of this change, a heel prick sample collection from neonate between 24 to 72 hours after birth 
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was introduced to the protocol. Details of the cohort 
flow are provided in Figure 1. Based on the quality 
control pilot analysis, only samples from 1318 new-
borns that had been stored in –80°C and were shipped 
in dry ice were considered for metabolic analyte es-
timation and processed at the collaborating laborato-
ry in Iowa. 7 samples were excluded due to missing 
birthweight data.

Ethical approval and Informed consent

The AMANHI and AMANHI-ACT study was approved 
by Ethics Review Committee of World Health Orga-
nization (WHO, RPC 532). These studies were also 
approved by local Institutional Review Boards as per 
regulations in each of the countries. Additional Ma-
terial Transfer Agreement (MTA) requirements were 
approved by the appropriate committees and/or Min-
istry of Health as required by local regulations. A core 
set of written consents were obtained from pregnant 
women, in their local or preferred languages, for un-
dergoing a screening ultrasound examination and 
subsequent enrolment if eligibility was confirmed 
(pregnancies between 8–19 weeks’ gestation). This 
included a separate consent for biological specimens, 
their bio-banking and subsequent use. In addition to 
the consent at enrolment, an additional written con-
sent was also obtained from mothers prior to collec-
tion of heel prick samples of their new-borns.

Sample collection and processing

Collection of blood sample was performed by a team 
of health care providers via heel prick method with-

in first 24-72 hours of birth of infants. For this analysis, blood samples were spotted onto Whatman 903 
protein saver cards (using a standard operating procedure, SOP), air-dried, stored at –80°C in zip-locks 
in freezer and shipped to University of Iowa on dry ice (with silica gel sachets in gas impermeable zipper 
bags). Samples were processed for metabolites analysis at State Hygienic Laboratory, Ankeny, Iowa, USA 
using tandem mass spectrometry for new-born metabolic screening. Forty-four metabolites including acyl-
carnitines, enzymes and hormones were estimated as per standard procedures used for the Iowa study and 
available in public domain (Table 1) [6]. The Laboratory and Analysis unit at Iowa was blinded to the gold 
standard GA. Statistical modelling analysis of the metabolite data along with available meta data was per-
formed at University of Iowa, College of Public Health, Department of Epidemiology using the previously 
established model equation [6]. After the initial GA estimation, the data set was sent to the WHO coordi-

Figure 1. Consort cohort flow diagram for pregnancies contributing samples 
for this nested sub-study.

Table 1. Metabolites, their squared and cubed terms included in the metabolites model for prediction of gestational age

Amino acids Alanine, Arginine, Isoleucine + Leucine, Methionine, Phenylalanine, Tyrosine, Valine

Acylcarnitines

Acetylcarnitine (C2), Propionylcarnitine (C3), Malonylcarnitine (C3-DC), Butyrylcarnitine +Isobutyrylcarnitine (C4), Methylmalonyl-
carnitine (C4-DC), Isovalerylcarnitine + Methylbutyrylcarnitine (C5), Tiglylcarnitine (C5:1), 3-Hydroxyisovalerylcarnitine (C5-OH), 
Glutarylcarnitine (C5-DC), Hexanoylcarnitine (C6), Methylglutarylcarnitine (C6-DC), Octanoylcarnitine (C8), Octenoylcarnitine 
(C8:1), Decanoylcarnitine (C10), Decenoylcarnitine (C10:1), Dodecanoylcarnitine (C12), Dodecenoylcarnitine (C12:1), Tetrade-
canoylcarnitine (C14), 3-Hydroxytetradecanoylcarnitine (C14-OH), Palmitoylcarnitine (C16), Palmitoleylcarnitine (C16:1), 3-Hy-
droxypalmitoylcarnitine (C16-OH), 3-Hydroxypalmitoleylcarnitine (C16:1-OH), Stearoylcarnitine (C18), Oleoylcarnitine (C18:1), 
3-Hydroxyoleoylcarnitine (C18:1OH), Linoleoylcarnitine (C18:2)

Enzymes & Hormones Galactose-1 Phosphate Uridyl Transferase (GALT), 17-Hydroxyprogesterone (17 OHP), Thyroid Stimulating Hormone (TSH)

Squared Values
Alanine, Arginine, Isoleucine + Leucine, Methionine, Phenylalanine, Valine, C2, C5, C4-DC, C5-DC, C6, C8, C8:1, C10, C12, C12:1, 
C6-DC, C14, C16, C16:1, C18, C18:1, C18:2, C14-OH, C16-OH, C16:1-OH, GALT, TSH, 17 OHP

Cubic Values
Alanine, Isoleucine + Leucine, Methionine, Phenylalanine, Valine, C2, C5, C4-DC, C5-DC, C8, C8:1, C10, C12, C12:1, C16, C16:1, 
C18, C18:1, C18:2, C16-OH, TSH
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nating centre, where the data set was linked with ultrasound based GA. The sample size had to be adjusted 
to feasibility as data from these settings were not available for Root Mean Square Error (RMSE) estimations, 
we finally based our sample size on feasibility and power of 90% to provide 5% precision in ROC analysis 
by region (Asia and Africa).

Statistical analysis

Preterm births were defined as all births that occurred at <37 weeks’ gestation. SGA was defined as cases 
where birthweight was below the 10th percentile of the reference birthweight (within gender specific GA at 
delivery strata) using new intergrowth standards [26]. Low Birth Weight was defined as an infant weighing 
below <2500 g. Details of statistical analysis and development of the regression equations and coefficients 
in those equations has been already published [6]. In generation of the estimated GA, the metabolite and 
metadata obtained from these samples were plugged into previous equations of predictive models (using the 
regression coefficients derived from parent Iowa data) [6]. No imputation of data was performed for miss-
ing data and the laboratory group was blinded to the GA of the samples, which was only added to data set 
at WHO after the results were shared to avoid bias.

We compared estimated GA and preterm births based on output from our models using analysis of blood 
spots against first trimester ultrasound GA, which are considered the gold standard for GA measurement 
[27,28]. RMSE were estimated for the total cohort as well as Sub Saharan African and South Asian cohorts. 
Again, performance among SGA new-borns was separately evaluated to ascertain any effect of higher Intra 
Uterine Growth Restriction (IUGR) prevalent in LMIC on the model performance. Concordance/discordance 
by week to help comparison with other published studies was undertaken. Two models were evaluated:

Model 1 – Metabolites model: The final new born metabolic linear regression model consisted of 88 pa-
rameters published previously [6]. This was derived by Ryckman et al [6] initially by performing a univari-
ate analysis for each metabolite and GA. Ryckman et al., [6] used the squared and cubic terms of each me-
tabolite to address nonlinearity between the metabolites and the GA. The linear, squared and cubic terms of 
metabolites which were significant at P < 0.01 from the univariate analysis were used in the model-building 
data set. Terms with significance less than 0.05 were retained for subsequent modelling. Cubic significant 
terms were used only when the squared terms were significant.

Model 2 – Metabolites and birth weight model: In the second model, birthweight was introduced into 
the metabolites model to assess improved prediction over the metabolites model only.

Receiver Operating Characteristic (ROC) area under curve analysis

For ROC analysis, we used Stata 16.1 (Stata Corp LLC, Texas, TX, USA) and Medcalc (MedCalc Software 
Ltd, Ostend, Belgium). Generation of ROC curve and Area Under the ROC Curve (AUC) estimation was 
performed and interpreted using standard methods [29-31]. We estimated Youden index J [32] defined as 
J = max (sensitivity

c
 + specificity

c
 – 1) where c ranges over all possible criterion values. Graphically, J is the 

maximum vertical distance between the ROC curve and the diagonal line. For both the Youden index and 
its corresponding criterion value, 95% confidence intervals (CI) were estimated using bootstrap methods 
[33-36]. Corresponding values and 95% CI for sensitivities and specificities were also estimated for a range 
of fixed and pre-specified sensitivities/specificities [37]. Confidence intervals were bootstrapped for 95% 
confidence intervals [32-35]. Comparison of ROC curves estimating difference, CI and P-value was also 
performed using bootstrap methods [38,39]. For the bootstrap estimation, we used 2000 replications and 
a fixed seed of 20 to enable replication of data.

RESULTS

Cohort characteristics of infants included in the study

A total of 1311 samples were used from the AMANHI/ACT cohort for the current analysis. As at that point 
in time, 3 cohorts had variable number of births left to enrol; a prior decision was made to have contribu-
tion from Bangladesh and Pakistan combined enabling analysis by region. The proportion of preterm infants 
was higher in South Asia as compared to Sub Saharan Africa. The proportion of infants with birthweight 
<2500 g was 5 times higher in South Asia as compared to Sub Saharan Africa. Characteristics of the cohort 
contributing to this analysis is provided in Table 2.
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Overall performance of gestational age estimation models

Model including only metabolites estimated GA relative to ultrasound-validated GA with RMSE of 1.65 weeks, 
model performance improved by including birth weight into it resulting in a RMSE of 1.52 weeks (Table 3). 
Regional validity of the metabolites only model was substantially lower in Africa (RMSE 1.78) compared to 
Asia (RMSE 1.51) while addition of birth weight to the model stabilized it across region RMSE 1.53 (Africa), 
1.52 (Asia).

Table 2. Cohort characteristics of infants included in the metabolic screening study

Characteristics All sites combined 
(total cohort)

Sub Saharan Africa 
(Tanzania)

South Asia 
(Pakistan & Bangladesh)

n = 1311 n = 736 (56.1%) n = 575 (43.9%)

Sex, n (%):

Male 620 (47.3) 354 (51.9) 266 (53.7)

Female 691 (52.7) 382 (48.1) 309 (46.3)

Gestational age (weeks), overall mean ± SD 38.5 ± 1.7 38.7 ± 1.7 38.4 ± 1.7

Gestational age category (weeks), n (%):

Term (≥ 37 weeks) 1161 (88.6) 669 (90.9) 492 (85.6)

Preterm (< 37 weeks) 150 (11.4) 67 (9.1) 83 (14.4)

Late preterm (34 to < 37 weeks) 123 (9.4) 52 (7.1) 71(12.3)

Early preterm (< 34 weeks) 27 (2.0) 15(2) 12 (2.1)

Birth weight (g), mean ± SD 3053 ± 561 3267 ± 510 2778 ± 502

Birth weight category, n (%):

≥2500 g 1127 (86.0) 699 (95.0) 428 (74.4)

<2500 g (low birthweight) 184 (14.0) 37 (5.0) 147 (25.6)

Twin or triplet, n (%) 36 (2.8%) 27 (3.7%) 9 (1.6%)

Age at newborn sample collection (h), mean ± SD 49.0 ± 16.2 46.6 ± 12.7 52.1 ± 19.4

SD – standard deviation, n – number, g – grams, h – hours

Table 3. Differences between ultrasound based and predicted gestational ages among overall and SGA infants

Performance measure Metabolites model Metabolites & birthweight model

Total Sub Saharan Africa South Asia Total
Sub Saharan 

Africa
South Asia

Overall:

RMSE 1.65 1.78 1.51 1.52 1.53 1.52

Weeks discrepant

1 week 68.7 64.7 73.9 70.5 71.7 68.9

2 weeks 88.6 86.6 91.3 90.1 88.9 91.7

SGA:

RMSE 1.77 2.43 1.53 2.14 2.55 1.98

Weeks discrepant

1 week 65.7 46.8 70.6 43.1 38.1 39.8

2 weeks 90 79 92.4 76.3 58.8 82.8

Estimates from previous country studies:

Weeks discrepant
Ontario 
Canada

Iowa newborn 
screening

California Newborn 
screening

Bangladesh 
Ontario model

Bangladesh extended 
Ontario model 3

N 249 700 230 013 729 503 487 487

1 week 66.8 78 78.3 57.3 63.9

2 weeks 94.9 95 91.7 88.5 94.3

Overall, inclusion of birthweight in the metabolites model (Model 2) increased accuracy of predicting GA 
correctly within 1 week to 70.5% and within 2 weeks to 90.1% of new-borns when compared to ultrasound 
based GA (Table 3). In terms of external validity, these estimates were reasonably valid though marginally lower 
than observed in original Iowa sample. The estimates were higher than those observed in Bangladesh samples 
where GA was estimated using the Ontario Model [5] without clinical parameters like new-born haemoglobin 
peak percentages, and similar to those (63.9% and 94.3%) obtained even after additional clinical parameters 
(Table 3). Amongst SGA infants, the models were less accurate overall. However, one without birth weight 
performed consistently better, RMSE 1.77 (Model 1) vs, 2.14 (Model 2). Similar differences were observed 
by region ie, Africa and Asia (Table 3). In general, all models predicted GAs close to full term with the high-
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est accuracy, while tending to overestimate GA in pre-term infants and underestimate GA in post-term infants 
(Table 4 and Table 5). The prevalence estimates of infants less than 37 weeks GA were least affected (estimat-
ed: gold standard) 10.9%: 11.4% in comparison with GA 39-40 weeks 35%: 49.8% and GA>40 weeks 0.2%: 
8.2% (Table 4). A detailed week wise improvement in prediction of gestational age was also observed for the 
two models (Table 6).

Table 4. Prevalence of gestational age groups amongst cohorts

Weeks Ultrasound based GA Metabolites and birthweight model
N % N %

Total:
≤34 27 2 27 2.1
35-36 123 9.4 116 8.8
37-38 400 30.5 707 53.9
39-40 653 49.8 458 35
>40 108 8.2 3 0.2
Sub Saharan Africa:
≤34 15 2 8 1.1
35-36 52 7.1 28 3.8
37-38 216 29.4 354 48.1
39-40 376 51 343 46.6
>40 77 10.5 3 0.4
South Asia:
≤34 12 2.1 19 3.3
35-36 71 12.3 88 15.3
37-38 184 32 353 61.4
39-40 277 48.2 115 20
>40 31 5.4 0 0

GA – gestational age

Table 5. Cross tabulation (concordance) between ultrasound based and predicted gestational ages (metabolites and birth-
weight model only)

Ultrasound based GA (weeks) Predicted GA (in weeks)
≤34 35-36 37-38 39-40 >40 Total

Overall
≤34 13 (48.1%) 13 1 - - 27
35-36 14 42 (34.1%) 61 6 - 123
37-38 - 43 270 (67.50%) 87 - 400
39-40 - 15 328 307 (47%) 3 653
>40 - 3 47 58 108
Sub Saharan Africa:
≤34 5 (33.3%) 9 1 - - 15
35-36 3 4 (7.7%) 40 5 - 52
37-38 - 7 136 (63%) 73 - 216
39-40 - 6 147 220 (58.5%) 3 376
>40 - 2 30 45 - 77
South Asia:
≤34 8 (66%) 4 - - - 12
35-36 11 38 (53.5%) 21 1 - 71
37-38 - 36 134 (72.8%) 14 - 184
39-40 - 9 181 87 (31.4%) - 277
>40 - 1 17 13 - 31

GA – gestational age

To evaluate the discriminatory ability of the estimated GA in identifying pre term births, ROC analysis per-
formed indicated a highly significant ability, with area under curve of 0.86 (conservative bootstrap 95% 
CI = 0.83 to 0.89); P < 0.001) and a Youden Index of 0.58 (95% CI = 0.51 to 0.64) with a corresponding sen-
sitivity of 80.7% and specificity of 77.6% (Figure 2, Panels A and B). These values were similar to those ob-
served in Iowa study (AUC = 0.89, 95% CI = 0.89 to 0.90)] [6]. There was a small but statistically significant 
difference between the curves in Africa and Asia of 8% (95% CI = 1% to 14%; P = 0.02) (Figure 2, Panel C). 
Curves were not statistically different (within the limitation of restricted power and wide CI) between SGA and 
non-SGA births difference of 5% (95% CI = -1% to 11%; P = 0.08) (Figure 2, Panel D).
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Table 6. Overall difference between ultrasound based and predicted gestational ages

Weeks Discrepant Metabolites model Metabolites and birth weight model
N % Cumulative % N % Cumulative %

Total:
0 333 25.4 25.4 352 26.9 26.9
1 568 43.3 68.7 572 43.6 70.5
2 261 19.9 88.6 257 19.6 90.1
3 94 7.2 95.8 103 7.9 98
≥4 55 4.2 100 27 2 100
Sub Saharan Africa:
0 169 23 23 209 28.4 28.4
1 307 41.7 64.7 319 43.3 71.7
2 161 21.9 86.6 126 17.1 88.9
3 59 8 94.6 67 9.1 98
≥4 40 5.4 100 15 2 100
South Asia:
0 164 28.5 28.5 143 24.9 24.9
1 261 45.4 73.9 253 44 68.9
2 100 17.4 91.3 131 22.8 91.7
3 35 6 97.4 36 6.3 97.9
≥4 15 2.6 100 12 2 100

Figure 2. Receiver operating characteristic (ROC) curve analysis and statistics for the final regression model in discriminat-
ing pre-term births. Panel A. Overall ROC curve and its (95% CI) Panel B. Statistics for ROC analysis and Bootstrap esti-
mates for fixed specificity and sensitivity. Panel C. Comparing ROC between Asia and Africa. Panel D. ROC comparison 
between small for gestational age (SGA) and non SGA births.

DISCUSSION
This validation study affirms that the “Iowa new-born screening data based” regression modelling approach 
and algorithms for estimating GA [6] was effective with an accuracy of approximately 1 to 2 weeks, of ultra-
sound-validated GA, among infants from cohorts in East Africa and South Asia. Study observed marginally 
lower accuracy overall as compared to Iowa results, but a range of accuracy was consistent and marginally 
better than hitherto reported studies with metabolic screening approach. A more recent refinement of adding 
clinical indicators, including ratio of foetal to adult haemoglobin, has been reported to improve RMSE to 1.07 
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in Ontario model [15,16] which was not evaluated in this study. However, in context of LMIC, its inclusion 
may impact feasibility and cost, therefore posing a concern for external validity.

Addition of birth weight to the metabolites model improved prediction both for Africa and Asia. However, 
improvement was substantial in estimation for African sample as compared to Asian sample. Accuracy among 
SGA new-borns was much lower with overall RMSE of 2.14, more so in Africa RMSE 2.55 and it was also ad-
versely affected by addition of birth weight to the model changing from 1.77 to 2.14. This finding is sugges-
tive of either growth faltering affecting the metabolite levels and/or the SGA population structure of the Iowa 
data imposing a limitation on model generation.

Our study provides evidence that in the absence of adequate infrastructure in low resource settings, storage 
and transportation of samples to a reference laboratory for evaluation provides a valid option and approach. 
However, this approach with requirement of ultracold chain, shipment and processing costs estimated at 50.00 
USD [15] does highlight feasibility restrictions.

Our study had a number of strengths and also some limitations which need consideration for interpreting the 
results. The strengths of this study include I) Use of samples from 3 countries representing both South Asia 
and East Africa, regions which are major global contributors to global mortality associated with preterm and 
SGA births. This being the only reported study from Africa. II) The study design was nested in a well-described 
population-based cohorts of pregnancy representative of the larger populations, using harmonized protocols 
and SOP coordinated by WHO. III) Gold standard GA assessments were extremely ideal, populations were 
under 2-month surveillance for early pregnancy identification with added measures like maintaining men-
strual calendar (Bangladesh) and providing pregnancy test (Pemba), gold standard ultrasound examination 
was harmonized and undertaken early in pregnancy between 8 and 19 weeks of gestation. IV) Establishment 
of standard SOP for sample collection, storage and shipment based on pilot QC, simultaneously adopted and 
implemented by all three sites, resulting in high quality of samples received for analysis and V) Unlike other 
LMIC study [17], we did not perform any imputation (predictive mean matching) or winsorization (Tukey 
Fence approach), in our data analysis which would in fact make analysis conservative and easily reproducible 
in other settings. As for weaknesses I) The primary limitation of this study is the participation bias against ear-
ly preterm and early deaths before sample collection window. A relatively small proportion of samples collect-
ed from these new-borns, limited our ability to comment on model performance in these sub-groups. II) We 
do have a smaller sample size as compared to developed country studies [6,14,15], although this is the largest 
sample available from LMIC settings for metabolic profile. III) Algorithm-derived GAs tended to be overesti-
mated in preterm infants and underestimated in post-term infants. Introducing a calibration slope adjustment 
[40] to model predictions may have improved overall model performance in this external cohort; however, 
that was not undertaken.

Our findings provide some evidence that gestational dating models developed using metabolic data derived 
from a North American cohort perform well in low-resource populations. These estimates are an improvement 
over the currently used postnatal GA estimation methods that produce estimates varying in accuracy from 2 
to 4 weeks GA [4,10,12,13,41]. Difference in GA at birth of a week has a significant impact on neonatal mor-
bidity, mortality, and long-term outcomes [42,43].

While considering implementation of metabolic gestational dating approaches for robust population-level esti-
mates (as a replacement for current inaccurate methods), some challenges and hence opportunities need con-
sideration. Heel prick samples for new-born screening are typically collected at least 24 hours after birth to ac-
commodate postpartum fluctuations in metabolite levels. This introduces a bias due to early deaths selectively 
occurring in preterm births, further in LMIC settings most mother-infant pairs do not stay in hospital beyond 
24 hours after delivery [44]. In populations where such samples are routinely collected by the health system, 
scaleup as is makes sense. However, in most LMIC, new-born screening is not a standard practice and will en-
tail challenges in sample collection and processing for metabolic screening. Therefore, rethinking and research 
investigating modifications to this approach are needed. These include development of cord-blood-specific 
models restricted to metabolites less susceptible to fluctuations in the postnatal environment, establishing a 
profile of fewer selected metabolites that are measurable in less sophisticated equipment.

One limitation in such endeavours has been lack of characterised large cohorts in LMIC to build revised algo-
rithms and models. Need for use of additional local reference data for algorithm development is also apparent 
from lack of accuracy of current models in SGA new-borns and observed differences between Asia and Africa. 
Newer machine learning approaches and introduction of advanced analytical methods may aid in improving 
accuracy of estimation.
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Currently reported GA model approaches (3 sites – Iowa, Ontario, California) are restricted to traditionally 
obtained new-born screening metabolites. While rethinking and investigating low-tech variations suitable to 
LMIC settings, also to consider are, newer high throughput trans proteome/metabolome platforms which are 
now becoming affordable (ie, Seers Nano peptide technology [45], Precision biomarker laboratory [46], Sapi-
ent Bioanalytics [47]. An untargeted metabolomic approach may improve our ability to estimate GA postna-
tally while also identifying infants at risk of a variety of conditions. Use of a broader spectrum of metabolites 
may also help select a restrictive model for cord blood. Metabolic GA dating at present aims to provide popu-
lation-based estimates of preterm birth and SGA burden, it is conceivable with introduction of advanced ana-
lytical methods and machine learning approaches could also guide care for high-risk newborns.

CONCLUSION
Algorithms and regression coefficients generated in Iowa were externally valid in South Asia and Sub Saharan 
Africa. Metabolic gestational age dating approaches offer a novel means for providing accurate population-level 
gestational age estimates in LMIC setting and help implementing preterm birth surveillance initiatives. A global 
guideline for the level of acceptable accuracy of metabolic algorithms is needed. Further research should focus 
on use of advanced analytic methods providing broader than conventional metabolic screen analytes. Coupled 
with machine learning, this could enable evaluating region-specific, broad untargeted or more specific feasible 
metabolite approaches. Derivation and optimization of cord blood metabolic profiles models predicting ges-
tational age accurately being an obvious focus of such efforts.
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