9 research outputs found

    Moisture content estimation and senescence phenotyping of novel Miscanthus hybrids combining UAV-based remote sensing and machine learning

    Get PDF
    Miscanthus is a leading perennial biomass crop that can produce high yields on marginal lands. Moisture content is a highly relevant biomass quality trait with multiple impacts on efficiencies of harvest, transport, and storage. The dynamics of moisture content during senescence and overwinter ripening are determined by genotype × environment interactions. In this paper, unmanned aerial vehicle (UAV)-based remote sensing was used for high-throughput plant phenotyping (HTPP) of the moisture content dynamics during autumn and winter senescence of 14 contrasting hybrid types (progeny of M. sinensis x M. sinensis [M. sin x M. sin, eight types] and M. sinensis x M. sacchariflorus [M. sin x M. sac, six types]). The time series of moisture content was estimated using machine learning (ML) models and a range of vegetation indices (VIs) derived from UAV-based remote sensing. The most important VIs for moisture content estimation were selected by the recursive feature elimination (RFE) algorithm and were BNDVI, GDVI, and PSRI. The ML model transferability was high only when the moisture content was above 30%. The best ML model accuracy was achieved by combining VIs and categorical variables (5.6% of RMSE). This model was used for phenotyping senescence dynamics and identifying the stay-green (SG) trait of Miscanthus hybrids using the generalized additive model (GAM). Combining ML and GAM modeling, applied to time series of moisture content values estimated from VIs derived from multiple UAV flights, proved to be a powerful tool for HTPP

    UAV multispectral remote sensing for high-throughput phenotyping of hemp and miscanthus traits

    No full text
    Il telerilevamento basato su aeromobile a pilotaggio remoto (APR) è stato utilizzato per high-throughput phenotyping (HTP) dei tratti di canapa e miscanto. Il telerilevamento da APR, tramite l’acquisizione di immagini multispettrali ed il calcolo di diversi indici di vegetazione, permette di stimare i tratti delle colture. In questa tesi, i tratti stimati per la canapa sono stati l'indice di area fogliare e il contenuto di clorofilla fogliare, mentre per il miscanto sono stati l'intercettazione della luce, l'altezza della pianta, la biomassa delle foglie verdi, la biomassa epigea e il contenuto di umidità. La stima dei tratti è stata effettuata utilizzando algoritmi di machine learning e l’inversione del modello PROSAIL. L'HTP di canapa e miscanto è stata effettuata applicando il modello additivo generalizzato (GAM) alle serie temporali dei valori dei tratti stimati dai voli APR. Il telerilevamento da APR ha permesso di analizzare le dinamiche dei tratti durante la stagione di crescita. La combinazione di modelli di stima e modellazione GAM, applicata alle serie temporali dei valori dei tratti stimati da più immagini multispettrali acquisite da voli APR, si è rivelata un potente strumento per l'HTP.Unmanned aerial vehicle (UAV) based remote sensing platform was used for high-throughput phenotyping (HTP) of hemp and miscanthus traits. UAV remote sensing, through the acquisition of multispectral images and the calculation of different vegetation indices, is able to estimate the crop traits. In this thesis, the crop traits estimated were leaf area index and leaf chlorophyll content for hemp, while light interception, plant height, green leaf biomass, standing biomass, and moisture content for miscanthus. The estimation of the traits was carried out using machine learning algorithms and the inversion of the PROSAIL model. The HTP of hemp and miscanthus was carried out by applying the generalized additive model (GAM) to the time series of traits values estimated from UAV flights. UAV remote sensing enabled to analyse of the traits' dynamics during the growing season. Combining estimation models and GAM modelling applied to time series of crop trait values estimated from multiple multispectral images of UAV flights proved to be a powerful tool for HTP

    Dynamic Maize Yield Predictions Using Machine Learning on Multi-Source Data

    No full text
    Timely yield prediction is crucial for the agri-food supply chain as a whole. However, different stakeholders in the agri-food sector require different levels of accuracy and lead times in which a yield prediction should be available. For the producers, predictions during the growing season are essential to ensure that information is available early enough for the timely implementation of agronomic decisions, while industries can wait until later in the season to optimize their production process and increase their production traceability. In this study, we used machine learning algorithms, dynamic and static predictors, and a phenology approach to determine the time for issuing the yield prediction. In addition, the effect of data reduction was evaluated by comparing results obtained with and without principal component analysis (PCA). Gaussian process regression (GPR) was the best for predicting maize yield. Its best performance (nRMSE of 13.31%) was obtained late in the season and with the full set of predictors (vegetation indices, meteorological and soil predictors). In contrast, neural network (NNET) and support vector machines linear basis function (SVMl) achieved their best accuracy with only vegetation indices and at the tasseling phenological stage. Only slight differences in performance were observed between the algorithms considered, highlighting that the main factors influencing performance are the timing of the yield prediction and the predictors with which the machine learning algorithms are fed. Interestingly, PCA was instrumental in increasing the performances of NNET after this stage. An additional benefit of the application of PCA was the overall reduction between 12 and 30.20% in the standard deviation of the maize yield prediction performance from the leave one-year outer-loop cross-validation, depending on the feature set

    Impact of Training Set Size and Lead Time on Early Tomato Crop Mapping Accuracy

    No full text
    Estimating key crop parameters (e.g., phenology, yield prediction) is a prerequisite for optimizing agrifood supply chains through the use of satellite imagery, but requires timely and accurate crop mapping. The moment in the season and the number of training sites used are two main drivers of crop classification performance. The combined effect of these two parameters was analysed for tomato crop classification, through 125 experiments, using the three main machine learning (ML) classifiers (neural network, random forest, and support vector machine) using a response surface methodology (RSM). Crop classification performance between minority (tomato) and majority (‘other crops’) classes was assessed through two evaluation metrics: Overall Accuracy (OA) and G-Mean (GM), which were calculated on large independent test sets (over 400,000 fields). RSM results demonstrated that lead time and the interaction between the number of majority and minority classes were the two most important drivers for crop classification performance for all three ML classifiers. The results demonstrate the feasibility of preharvest classification of tomato with high performance, and that an RSM-based approach enables the identification of simultaneous effects of several factors on classification performance. SVM achieved the best grading performances across the three ML classifiers, according to both evaluation metrics. SVM reached highest accuracy (0.95 of OA and 0.97 of GM) earlier in the season (low lead time) and with less training sites than the other two classifiers, permitting a reduction in cost and time for ground truth collection through field campaigns

    RTM Inversion through Predictive Equations for Multi-Crop LAI Retrieval Using Sentinel-2 Images

    No full text
    Near-real-time, high-spatial-resolution leaf area index (LAI) maps would enable producers to monitor crop health and growth status, improving agricultural practices such as fertiliser and water management. LAI retrieval methods are numerous and can be divided into statistical and physically based methods. While statistical methods are generally subject to high site-specificity but possess high ease of implementation and use, physically based methods are more transferable, albeit more complex to use in operational settings. In addition, statistical methods need a large amount of data for calibration and subsequent validation, and this is only seldom feasible. Techniques based on predictive equations (PEphysical) represent a viable alternative, allowing the partial combination of statistical and physical methods merits while minimising their shortcomings. In this paper, predictive equation-based techniques were compared with four other methods: two radiative transfer model (RTM) inversion methods, one based on neural network (NNET) and one based on a look-up table (LUT), and two empirical methods (one using empirical models based on vegetation indices and in situ data and one based on empirical models found in the scientific literature). The methods were chosen based on common use. To evaluate the performance of the studied methods, the coefficient of determination (R2), root mean square error (RMSE), and normalised root mean square error (nRMSE, %) between the estimates and in situ LAI measurements were reported. The best PEphysical results, achieved by the OSAVI index (RMSE = 0.84 m2 m−2), provided better performance for LAI recovery than the NNET-based RTM inversions (0.86 m2 m−2) or the estimates made by LUT (0.94 m2 m−2). Furthermore, the best PEphysical produced accuracies comparable to the best empirical model (RMSE = 0.71 m2 m−2), calibrated through in situ data, and similar to the best literature model (RMSE = 0.76 m2 m−2). These results indicated that PEphysical can be used to recover LAI with transferability comparable to literature models

    Dynamic Maize Yield Predictions Using Machine Learning on Multi-Source Data

    Get PDF
    Timely yield prediction is crucial for the agri-food supply chain as a whole. However, different stakeholders in the agri-food sector require different levels of accuracy and lead times in which a yield prediction should be available. For the producers, predictions during the growing season are essential to ensure that information is available early enough for the timely implementation of agronomic decisions, while industries can wait until later in the season to optimize their production process and increase their production traceability. In this study, we used machine learning algorithms, dynamic and static predictors, and a phenology approach to determine the time for issuing the yield prediction. In addition, the effect of data reduction was evaluated by comparing results obtained with and without principal component analysis (PCA). Gaussian process regression (GPR) was the best for predicting maize yield. Its best performance (nRMSE of 13.31%) was obtained late in the season and with the full set of predictors (vegetation indices, meteorological and soil predictors). In contrast, neural network (NNET) and support vector machines linear basis function (SVMl) achieved their best accuracy with only vegetation indices and at the tasseling phenological stage. Only slight differences in performance were observed between the algorithms considered, highlighting that the main factors influencing performance are the timing of the yield prediction and the predictors with which the machine learning algorithms are fed. Interestingly, PCA was instrumental in increasing the performances of NNET after this stage. An additional benefit of the application of PCA was the overall reduction between 12 and 30.20% in the standard deviation of the maize yield prediction performance from the leave one-year outer-loop cross-validation, depending on the feature set
    corecore