7 research outputs found

    Electron-Transfer Chemistry of Ru−Linker−(Heme)-Modified Myoglobin: Rapid Intraprotein Reduction of a Photogenerated Porphyrin Cation Radical

    Get PDF
    We report the synthesis and characterization of RuC7, a complex in which a heme is covalently attached to a [Ru(bpy)_3]^(2+) complex through a −(CH_2)_7− linker. Insertion of RuC7 into horse heart apomyoglobin gives RuC7Mb, a Ru(heme)−protein conjugate in which [Ru(bpy)_3]^(2+) emission is highly quenched. The rate of photoinduced electron transfer (ET) from the resting (Ru^(2+)/Fe^(3+)) to the transient (Ru^(3+)/Fe^(2+)) state of RuC7Mb is >10^8 s^(-1); the back ET rate (to regenerate Ru^(2+)/Fe^(3+)) is 1.4 × 10^7 s^(-1). Irreversible oxidative quenching by [Co(NH_3)_5Cl]^(2+) generates Ru^(3+)/Fe^(3+):  the Ru^(3+) complex then oxidizes the porphyrin to a cation radical (P^(•+)); in a subsequent step, P^(•+) oxidizes both Fe^(3+) (to give Fe^(IV)═O) and an amino acid residue. The rate of intramolecular reduction of P^(•+) is 9.8 × 10^3 s^(-1); the rate of ferryl formation is 2.9 × 10^3 s^(-1). Strong EPR signals attributable to tyrosine and tryptophan radicals were recorded after RuC7MbM^(3+) (M = Fe, Mn) was flash-quenched/frozen

    Characterization of reagent pencils for deposition of reagents onto paper-based microfluidic devices

    Get PDF
    Reagent pencils allow for solvent-free deposition of reagents onto paper-based microfluidic devices. The pencils are portable, easy to use, extend the shelf-life of reagents, and offer a platform for customizing diagnostic devices at the point of care. In this work, reagent pencils were characterized by measuring the wear resistance of pencil cores made from polyethylene glycols (PEGs) with different molecular weights and incorporating various concentrations of three different reagents using a standard pin abrasion test, as well as by measuring the efficiency of reagent delivery from the pencils to the test zones of paper-based microfluidic devices using absorption spectroscopy and digital image colorimetry. The molecular weight of the PEG, concentration of the reagent, and the molecular weight of the reagent were all found to have an inverse correlation with the wear of the pencil cores, but the amount of reagent delivered to the test zone of a device correlated most strongly with the concentration of the reagent in the pencil core. Up to 49% of the total reagent deposited on a device with a pencil was released into the test zone, compared to 58% for reagents deposited from a solution. The results suggest that reagent pencils can be prepared for a variety of reagents using PEGs with molecular weights in the range of 2000 to 6000 g/mol

    Electrocatalytic Reductions of Nitrite, Nitric Oxide, and Nitrous Oxide by Thermophilic Cytochrome P450 CYP119 in Film-Modified Electrodes and An Analytical Comparison of Its Catalytic Activities with Myoglobin

    No full text
    Previous investigations of nitrite and nitric oxide reduction by myoglobin in surfactant film modified electrodes characterized several distinct steps in the denitrification pathway, including isolation of a nitroxyl adduct similar to that proposed in the P450nor catalytic cycle. To investigate the effect of the axial ligand on these biomimetic reductions, we report here a comparison of the electrocatalytic activity of myoglobin (Mb) with a thermophilic cytochrome P450 CYP119. Electrocatalytic nitrite reduction by CYP119 is very similar to that by Mb: two catalytic waves at analogous potentials are observed, the first corresponding to the reduction of nitric oxide, the second to the production of ammonia. CYP119 is a much more selective catalyst, giving almost exclusively ammonia during the initial half-hour of reductive electrolysis of nitrite. More careful investigations of specific steps in the catalytic cycle show comparable rates of nitrite dehydration and almost identical potentials and lifetimes for ferrous nitroxyl intermediate (FeII-NO-) in CYP119 and Mb. The catalytic efficiency of nitric oxide reduction is reduced for CYP119 as compared to Mb, attributable to both a lower affinity of the protein for NO and a decreased rate of N−N coupling. Isotopic labeling studies show ammonia incorporation into nitrous oxide produced during nitrite reduction, as has been termed co-denitrification for certain bacterial and fungal nitrite reductases. Mb has a much higher co-denitrification activity than CYP119. Conversely, CYP119 is shown to be slightly more efficient at the two-electron reduction of N2O to N2. These results suggest that thiolate ligation does not significantly alter the catalytic reactivity, but the dramatic difference in product distribution may suggest an important role for protein stability in the selectivity of biocatalysts

    Electrochemistry of the Cu_A domain of Thermus thermophilus cytochrome ba _3

    No full text
    The electrochemistry of a water-soluble fragment from the Cu_A domain of Thermus thermophilus cytochrome ba _3 has been investigated. At 25  °C, Cu_A exhibits a reversible reduction at a pyridine-4-aldehydesemicarbazone-modified gold electrode (0.1 M Tris, pH 8) with E° = 0.24 V vs NHE. Thermodynamic parameters for the [Cu(Cys)_2Cu]^(+/0) electrode reaction were determined by variable-temperature electrochemistry (ΔS°_(rc) = –5.4(12) eu, ΔS° = –21.0(12) eu, ΔH° = –11.9(4) kcal/mol;ΔG° = –5.6 (11) kcal/mol). The relatively small reaction entropy is consistent with a low reorganization energy for [Cu(Cys)_2Cu]^(+/0) electron transfer. An irreversible oxidation of [Cu(Cys)_2Cu]^+ at 1 V vs NHE confirms that the Cu^(II):Cu^(II) state of Cu_A is significantly destabilized relative to the Cu^(II) state of analogous blue-copper proteins

    Synthesis and Electronic Properties of Fluoreno[2,1‑<i>a</i>]fluorenedione and Fluoreno[1,2‑<i>a</i>]fluorenedione

    No full text
    The [2,1-<i>a</i>]- and [1,2-<i>a</i>]-isomers of fluorenofluorenedione have been synthesized via intramolecular Friedel–Crafts acylations. DFT calculations indicate that the [1,2-<i>a</i>]-isomer adopts a twisted, helical <i>C</i><sub>2</sub>-symmetric structure and that its protonated form is the thermodynamic product of the Friedel–Crafts acylation in hot sulfuric acid. Absorption spectroscopy and cyclic voltammetry measurements provide experimental estimations of frontier molecular orbital energy levels, which are reported and discussed
    corecore