13 research outputs found

    Effect of MGO accumulation on vascular function in mouse experimental models in vitro and in vivo.

    Get PDF
    Methylglyoxal (MGO), a highly reactive dicarbonyl compound formed as by-product of glycolysis, is an ubiquitous metabolite of cellular metabolism. Therefore, it is produced in all cells, both under normal and pathological conditions. Under physiological circumstances, MGO is detoxified through the glyoxalase system, of which Glyoxalase 1 (Glo1) is the rate limiting enzyme. In pathological conditions, as in chronic hyperglycemia, high blood glucose levels lead to increased MGO accumulation. It is known that MGO plays a major role in endothelial cell damage and development of vascular disease. We have previously demonstrated that MGO induces endothelial insulin resistance both in vitro and in animal models. In the last few years, many evidence has provided a link between microRNAs (miRNAs) and diabetic complications. Indeed, miRNAs regulate cellular molecular pathways, including insulin signaling, thus controlling the pathophysiology of vascular bed. This study includes the investigation of two aspects of MGO effects on the pathophysiology of diabetes mellitus (DM) and its associated complications: 1. the evaluation of MGO accumulation on glucose homeostasis and vascular function in a mouse model knockdown for Glo1 (Glo1KD) and 2. the analysis of miRNAs contribution in MGO induced damaging effect on insulin responsiveness in mouse aortic endothelial cells (MAECs). The results obtained in vivo demonstrated that the endogenous accumulation of MGO in mice with a reduced expression of Glo1 leads to an age-dependent development of glucose intolerance, in absence of hyperglycemia. Indeed, despite the reduced glucose tolerance at 10 months of age, Glo1KD mice have no differences in body weight and in the glucose levels, compared to WT mice, neither at 5 months nor at 10 months of age. While no alterations in the whole-body insulin-sensitivity have been observed by insulin tolerance tests, Glo1KD mice show a basal hyperinsulinemia and impaired glucose-stimulated insulin-secretion, compared to WT mice. Moreover, an increased systolic blood pressure accompanied by impaired endothelium-dependent vasodilation are already shown starting from 5 months of age in Glo1KD mice. A deeper analysis of the molecular mechanisms involved in the endothelial dysfunction has been performed in vitro, in MAECs exposed to MGO, which we have previously demonstrated to display insulin resistance and an imbalanced production of vasoactive molecules: NO and ET-1. Our results demonstrate that MGO induces the down-regulation of 4 out of 84 diabetes-associated miRNAs. Among these, the reduced expression of miR-190a and miR-214 has been validated both in MAECs exposed to MGO and in aortae from Glo1KD mice. The inhibition of miR-190a and miR-214 impairs the insulin-induced activation of Akt1/eNOS pathway, whereas their overexpression prevents the MGO-induced insulin resistance in MAECs. In detail, we have identified the kinase KRAS and the phosphatase PHLPP2 as targets of miR-190a and miR-214, respectively. In MAECs increased KRAS levels result from the reduced expression of miR-190a and sustain the ERK hyperactivation, which is in turn responsible for the impairment of the insulin-stimulated IRS1/Akt/eNOS signal transduction in MAECs treated with MGO. Moreover, a reduced insulin-dependent activation of Akt in MGO-treated MAECs is fostered by higher protein levels of PHLPP2, which we validate here to be a direct target of miR-214. In conclusion, our results demonstrate that Glo1 silencing is enough to induce MGO accumulation in vivo in Glo1KD mice, causing glucose intolerance and β-cell dysfunction, which are characteristic of T2DM pathogenesis, together with the impairment of hemodynamic function (i.e blood pressure and endothelial-dependent vasodilation), in a context of normoglycemia. Moreover, miR-190a and miR-214 play a role in the endothelial insulin-resistance induced by MGO in MAECs. Thus, representing potential biomarkers of vascular dysfunction. Further efforts in the development of pharmacological intervention to interfere with these pathogenic events will be useful to provide new therapeutic options aimed at preventing the onset and progression of vascular complications in diabetes

    A new synthetic dual agonist of GPR120/GPR40 induces GLP-1 secretion and improves glucose homeostasis in mice.

    Get PDF
    Abstract G-protein coupled receptors 40 and 120 (GPR40 and GPR120) are increasingly emerging as potential therapeutic targets for the treatment of altered glucose homeostasis, and their agonists are under evaluation for their glucagon-like peptide-1 (GLP-1)-mediated therapeutic effects on insulin production and sensitivity. Here, we characterized a new dual GPR40 and GPR120 agonist (DFL23916) and demonstrated that it can induce GLP-1 secretion and improve glucose homeostasis. Resulting from a rational drug design approach aimed at identifying new dual GPR120/40 agonists able to delay receptor internalization, DFL23916 had a good activity and a very high selectivity towards human GPR120 (long and short isoforms) and GPR40, as well as towards their mouse orthologous, by which it induced both Gαq/11-initiated signal transduction pathways with subsequent Ca2+ intracellular spikes and G protein-independent signaling via β-arrestin with the same activity. Compared to the endogenous ligand alpha-linolenic acid (ALA), a selective GPR120 agonist (TUG-891) and a well-known dual GPR40 and GPR120 agonist (GW9508), DFL23916 was the most effective in inducing GLP-1 secretion in human and murine enteroendocrine cells, and this could be due to the delayed internalization of the receptor (up to 3 h) that we observed after treatment with DFL23916. With a good pharmacokinetic/ADME profile, DFL23916 significantly increased GLP-1 portal vein levels in healthy mice, demonstrating that it can efficiently induce GLP-1 secretion in vivo. Contrary to the selective GPR120 agonist (TUG-891), DFL23916 significantly improved also glucose homeostasis in mice undergoing an oral glucose tolerance test (OGTT)

    The Destiny of Glucose from a MicroRNA Perspective

    No full text
    Glucose serves as a primary, and for some tissues the unique, fuel source in order to generate and maintain the biological functions. Hyperglycemia is a hallmark of type 2 diabetes and is the direct consequence of perturbations in the glucose homeostasis. Insulin resistance, referred to as a reduced response of target tissues to the hormone, contributes to the development of hyperglycemia. The molecular mechanisms responsible for the altered glucose homeostasis are numerous and not completely understood. MicroRNAs (miRNAs) are now recognized as regulators of the lipid and glucose metabolism and are involved in the onset of metabolic diseases. Indeed, these small non-coding RNA molecules operate in the RNA silencing and posttranscriptional regulation of gene expression and may modulate the levels of kinases and enzymes in the glucose metabolism. Therefore, a better characterization of the function of miRNAs and a deeper understanding of their role in disease may represent a fundamental step toward innovative treatments addressing the causes, not only the symptoms, of hyperglycemia, using approaches aimed at restoring either miRNAs or their specific targets. In this review, we outline the current understanding regarding the impact of miRNAs in the glucose metabolism and highlight the need for further research focused on altered key kinases and enzymes in metabolic diseases

    Dicarbonyl Stress at the Crossroads of Healthy and Unhealthy Aging

    No full text
    Dicarbonyl stress occurs when dicarbonyl metabolites (i.e., methylglyoxal, glyoxal and 3-deoxyglucosone) accumulate as a consequence of their increased production and/or decreased detoxification. This toxic condition has been associated with metabolic and age-related diseases, both of which are characterized by a pro-inflammatory and pro-oxidant state. Methylglyoxal (MGO) is the most reactive dicarbonyl and the one with the highest endogenous flux. It is the precursor of the major quantitative advanced glycated products (AGEs) in physiological systems, arginine-derived hydroimidazolones, which accumulate in aging and dysfunctional tissues. The aging process is characterized by a decline in the functional properties of cells, tissues and whole organs, starting from the perturbation of crucial cellular processes, including mitochondrial function, proteostasis and stress-scavenging systems. Increasing studies are corroborating the causal relationship between MGO-derived AGEs and age-related tissue dysfunction, unveiling a previously underestimated role of dicarbonyl stress in determining healthy or unhealthy aging. This review summarizes the latest evidence supporting a causal role of dicarbonyl stress in age-related diseases, including diabetes mellitus, cardiovascular disease and neurodegeneration

    Epigenetic Reprogramming of the Inflammatory Response in Obesity and Type 2 Diabetes

    No full text
    For the past several decades, the prevalence of obesity and type 2 diabetes (T2D) has continued to rise on a global level. The risk contributing to this pandemic implicates both genetic and environmental factors, which are functionally integrated by epigenetic mechanisms. While these conditions are accompanied by major abnormalities in fuel metabolism, evidence indicates that altered immune cell functions also play an important role in shaping of obesity and T2D phenotypes. Interestingly, these events have been shown to be determined by epigenetic mechanisms. Consistently, recent epigenome-wide association studies have demonstrated that immune cells from obese and T2D individuals feature specific epigenetic profiles when compared to those from healthy subjects. In this work, we have reviewed recent literature reporting epigenetic changes affecting the immune cell phenotype and function in obesity and T2D. We will further discuss therapeutic strategies targeting epigenetic marks for treating obesity and T2D-associated inflammation

    DNA Methylation and Type 2 Diabetes: Novel Biomarkers for Risk Assessment?

    No full text
    : Diabetes is a severe threat to global health. Almost 500 million people live with diabetes worldwide. Most of them have type 2 diabetes (T2D). T2D patients are at risk of developing severe and life-threatening complications, leading to an increased need for medical care and reduced quality of life. Improved care for people with T2D is essential. Actions aiming at identifying undiagnosed diabetes and at preventing diabetes in those at high risk are needed as well. To this end, biomarker discovery and validation of risk assessment for T2D are critical. Alterations of DNA methylation have recently helped to better understand T2D pathophysiology by explaining differences among endophenotypes of diabetic patients in tissues. Recent evidence further suggests that variations of DNA methylation might contribute to the risk of T2D even more significantly than genetic variability and might represent a valuable tool to predict T2D risk. In this review, we focus on recent information on the contribution of DNA methylation to the risk and the pathogenesis of T2D. We discuss the limitations of these studies and provide evidence supporting the potential for clinical application of DNA methylation marks to predict the risk and progression of T2D

    miR-214-Dependent Increase of PHLPP2 Levels Mediates the Impairment of Insulin-Stimulated Akt Activation in Mouse Aortic Endothelial Cells Exposed to Methylglyoxal

    No full text
    Evidence has been provided linking microRNAs (miRNAs) and diabetic complications, by the regulation of molecular pathways, including insulin-signaling, involved in the pathophysiology of vascular dysfunction. Methylglyoxal (MGO) accumulates in diabetes and is associated with cardiovascular complications. This study aims to analyze the contribution of miRNAs in the MGO-induced damaging effect on insulin responsiveness in mouse aortic endothelial cells (MAECs). miRNA modulation was performed by transfection of specific miRNA mimics and inhibitors in MAECs, treated or not with MGO. miRNA-target protein levels were evaluated by Western blot. PH domain leucine-rich repeat protein phosphatase 2 (PHLPP2) regulation by miR-214 was tested by luciferase assays and by the use of a target protector specific for miR-214 on PHLPP2-3′UTR. This study reveals a 4-fold increase of PHLPP2 in MGO-treated MAECs. PHLPP2 levels inversely correlate with miR-214 modulation. Moreover, miR-214 overexpression is able to reduce PHLPP2 levels in MGO-treated MAECs. Interestingly, a direct regulation of PHLPP2 is proved to be dependent by miR-214. Finally, the inhibition of miR-214 impairs the insulin-dependent Akt activation, while its overexpression rescues the insulin effect on Akt activation in MGO-treated MAECs. In conclusion, this study shows that PHLPP2 is a target of miR-214 in MAECs, and identifies miR-214 downregulation as a contributing factor to MGO-induced endothelial insulin-resistance

    Methylglyoxal accumulation de-regulates HoxA5 expression, thereby impairing angiogenesis in glyoxalase 1 knock-down mouse aortic endothelial cells

    No full text
    Impaired angiogenesis leads to long-term complications and is a major contributor of the high morbidity in patients with Diabetes Mellitus (DM). Methylglyoxal (MGO) is a glycolysis byproduct that accumulates in DM and is detoxified by the Glyoxalase 1 (Glo1). Several studies suggest that MGO contributes to vascular complications through mechanisms that remain to be elucidated. In this study we have clarified for the first time the molecular mechanism involved in the impairment of angiogenesis induced by MGO accumulation. Angiogenesis was evaluated in mouse aortic endothelial cells isolated from Glo1-knockdown mice (Glo1KD MAECs) and their wild-type littermates (WT MAECs). Reduction in Glo1 expression led to an accumulation of MGO and MGO-modified proteins and impaired angiogenesis of Glo1KD MAECs. Both mRNA and protein levels of the anti-angiogenic HoxA5 gene were increased in Glo1KD MAECs and its silencing improved both their migration and invasion. Nuclear NF-ĸB-p65 was increased 2.5-fold in the Glo1KD as compared to WT MAECs. Interestingly, NF-ĸB-p65 binding to HoxA5 promoter was also 2-fold higher in Glo1KD MAECs and positively regulated HoxA5 expression in MAECs. Consistent with these data, both the exposure to a chemical inhibitor of Glo1 "SpBrBzGSHCp2" (GI) and to exogenous MGO led to the impairment of migration and the increase of HoxA5 mRNA and NF-ĸB-p65 protein levels in microvascular mouse coronary endothelial cells (MCECs). This study demonstrates, for the first time, that MGO accumulation increases the antiangiogenic factor HoxA5 via NF-ĸB-p65, thereby impairing the angiogenic ability of endothelial cells

    Epigenetic Dysregulation of the Homeobox A5 (HOXA5) Gene Associates with Subcutaneous Adipocyte Hypertrophy in Human Obesity

    No full text
    Along with insulin resistance and increased risk of type 2 diabetes (T2D), lean first-degree relatives of T2D subjects (FDR) feature impaired adipogenesis in subcutaneous adipose tissue (SAT) and subcutaneous adipocyte hypertrophy well before diabetes onset. The molecular mechanisms linking these events have only partially been clarified. In the present report, we show that silencing of the transcription factor Homeobox A5 (HOXA5) in human preadipocytes impaired differentiation in mature adipose cells in vitro. The reduced adipogenesis was accompanied by inappropriate WNT-signaling activation. Importantly, in preadipocytes from FDR individuals, HOXA5 expression was attenuated, with hypermethylation of the HOXA5 promoter region found responsible for its downregulation, as revealed by luciferase assay. Both HOXA5 gene expression and DNA methylation were significantly correlated with SAT adipose cell hypertrophy in FDR, whose increased adipocyte size marks impaired adipogenesis. In preadipocytes from FDR, the low HOXA5 expression negatively correlated with enhanced transcription of the WNT signaling downstream genes NFATC1 and WNT2B. In silico evidence indicated that NFATC1 and WNT2B were directly controlled by HOXA5. The HOXA5 promoter region also was hypermethylated in peripheral blood leukocytes from these same FDR individuals, which was further revealed in peripheral blood leukocytes from an independent group of obese subjects. Thus, HOXA5 controlled adipogenesis in humans by suppressing WNT signaling. Altered DNA methylation of the HOXA5 promoter contributed to restricted adipogenesis in the SAT of lean subjects who were FDR of type 2 diabetics and in obese individuals
    corecore