8 research outputs found

    Modeling-based optimization approaches for the development of Anti- Agrobacterium tumefaciens activity using Streptomyces sp TN71

    Get PDF
    A new aerobic bacterium TN71 was isolated from Tunisian Saharan soil and has been selected for its antimicrobial activity against phytopathogenic bacteria. Based on cellular morphology, physiological characterization and phylogenetic analysis, this isolate has been assigned as Streptomyces sp. TN71 strain. In an attempt to increase its anti-Agrobacterium tumefaciens activity, GYM + S (glucose, yeast extract, malt extract and starch) medium was selected out of five different production media and the medium composition was optimized. Plackett-Burman design (PBD) was used to select starch, malt extract and glucose as parameters having significant effects on antibacterial activity and a Box-Behnken design was applied for further optimization. The analysis revealed that the optimum concentrations for anti-A. tumefaciens activity of the tested variables were 19.49 g/L for starch, 5.06 g/L for malt extract and 2.07 g/L for glucose. Several Artificial Neural Networks (ANN): the Multilayer perceptron (MLP) and the Radial basis function (RBF) were also constructed to predict anti-A. tumefaciens activity. The comparison between experimental with predicted outputs from ANN and Response Surface Methodology (RSM) were studied. ANN model presents an improvement of 12.36% in terms of determination coefficients of anti A. tumefaciens activity. To our knowledge, this is the first work reporting the statistical versus artificial intelligence based modeling for optimization of bioactive molecules against phytopathogen

    Anti-oxidant, antimicrobial and anti-acetylcholinesterase activities of organic extracts from aerial parts of three Tunisian plants and correlation with polyphenols and flavonoids contents

    No full text
    In goal of searching new active compounds with important biological activities, a screening of several plants from salt-marsh region of Chebba-Tunisia had been realized. Three species had been selected: Calendula arvensis, Chenopodium murale and Nicotiana glauca. The organic extracts of different aerial parts of these plants (stems, leaves and flowers) displayed variable contents of total polyphenols (TPP) and total flavonoids (TF). Flowers acetone extract from N. glauca contained the higher quantity in TPP (264.8 ± 1.6 µg GA/mg), while stems dichloromethane extract exhibited the best TF content (49.8 ± 2.2 µg QE/mg). The important TPP and TF contents reflected a good anti-oxidant and antimicrobial activities. The best acetylcholinesterase inhibitory activity had been shown in the fractions obtained after extraction with low polarity solvents. Whence, a correlation of flavonoids contents with biological activities had been shown, while, there was no correlation with acetylcholinesterase inhibitory activity. Video Clip of Methodology: DPPH radical scavenging activity: 3 min   Full Screen   Alternat

    Enterocin BacFL31 from a Safety Enterococcus faecium FL31: Natural Preservative Agent Used Alone and in Combination with Aqueous Peel Onion (Allium cepa) Extract in Ground Beef Meat Storage

    No full text
    Safety aspects and probiotic properties of Enterococcus faecium FL31 strain producing an enterocin, named BacFL31 were previously demonstrated. Taking into account its originality, the enterocin BacFL31 was added alone at 200 AU/g or in combination with the aqueous peel onion (Allium cepa) extract (APOE) at 1.56 ± 0.3 mg/mL to ground beef meat. Its biopreservative effect was evaluated by microbiological, physicochemical and sensory analyses during 14 days at 4°C. The APOE was characterized for its phytochemical content: total phenolic (TPC), flavonoids (TFC) and tannins contents (TAC), its antioxidant capacity using the in vitro 1,1-diphenyl-2-picrylhydrazyl (DPPH) and its antilisterial activity. APOE had a high TPC, TFC and TAC respectively with 140 ± 2.05 (mg GAE/g), 35 ± 0.5 (mg QE/g) and 20.6 ± 1.4 (mg CE/g). Equally, APOE showed a potential radical scavenging activity compared to the butylated hydroxytoluene (BHT), with an anti-radical power (ARP) of 46 ± 1.5. During 14 days of storage at 4°C, the combination between APOE and BacFL31 limited the microbial deterioration (P < 0.05), led to a decrease in thiobarbituric acid reactive substances (TBARS) values and slowed down the metmyoglobin (MetMb) and carbonyl group accumulation and delayed the disappearance of sulfphydryl proteins (P < 0.05). The combination was also efficient (P < 0.05) against microflora proliferation, decreased primary and secondary lipid oxidation (P < 0.05), reduced protein oxidation and enhanced significantly (P < 0.05) the sensory attributes. Thus, the enterocin BacFL31 use from a safe Enterococcus faecium combined with APOE as a potential natural preservative to biocontrol ground beef was promising as it was effective at low concentration. The data lay bases for new tests to be carried out in other food matrices

    Safety Aspect of Enterococcus faecium FL31 Strain and Antibacterial Mechanism of Its Hydroxylated Bacteriocin BacFL31 against Listeria monocytogenes

    No full text
    In previous work we have isolated and identified a new strain called Enterococcus faecium FL31. The active compound secreted by this strain, “BacFL31”, has been purified and characterized. In the present study, safety aspect, assessed by microbiological and molecular tests, demonstrated that Enterococcus faecium FL31 was susceptible to relevant antibiotics, free of hemolytic, gelatinase, DNase, and lipase activities. In addition, it did not harbor virulence and antibiotic resistance genes. Combined SYTOX Green dye and UV-absorbing experiments, along with released extracellular potassium and transmembrane electrical potential measurements, showed that pure BacFL31 at a concentration of 1×MIC (50 μg/mL) could damage cytoplasmic membrane of the pathogen Listeria monocytogenes ATCC19117. The same concentration causes the leakage of its intracellular constituents and leads to the destruction of this pathogenic microorganism. In summary, this work reflected characteristics of Enterococcus faecium FL31 strain and its bacteriocin in terms of functional and safety perspectives

    A Review on Worldwide Ephedra History and Story: From Fossils to Natural Products Mass Spectroscopy Characterization and Biopharmacotherapy Potential

    No full text
    Growing worldwide, the genus Ephedra (family Ephedraceae) had a medicinal, ecological, and economic value. The extraordinary morphological diversity suggests that Ephedra was survivor of an ancient group, and its antiquity is also supported by fossil data. It has recently been suggested that Ephedra appeared 8–32 million years ago, and a few megafossils document its presence in the Early Cretaceous. Recently, the high analytical power provided by the new mass spectrometry (MS) instruments is making the characterization of Ephedra metabolites more feasible, such as ephedrine series. In this regard, the chemical compounds isolated from crude extracts, fractions, and few isolated compounds of Ephedra species were characterized by MS-based techniques (LC-MS, LC-ESI-MS, HPLC-PDA-ESI/MS, LC-DAD-ESI/MSn, LC/Orbitrap MS, etc.). Moreover, we carry out an exhaustive review of the scientific literature on biomedicine and pharmacotherapy (anticancer, antiproliferative, anti-inflammatory, antidiabetic, antihyperlipidemic, antiarthritic, and anti-influenza activities; proapoptotic and cytotoxic potential; and so on). Equally, antimicrobial and antioxidant activities were discussed. This review is focused on all these topics, along with current studies published in the last 5 years (2015–2019) providing in-depth information for readers
    corecore