212 research outputs found

    Effects of leading-edge devices on the low-speed aerodynamic characteristics of a highly-swept arrow-wing

    Get PDF
    An investigation was conducted in the Texas A&M University 7 by 10 foot Low Speed Wind Tunnel to provide a direct comparison of the effect of several leading edge devices on the aerodynamic performance of a highly swept wing configuration. Analysis of the data indicates that for the configuration with undeflected leading edges, vortex separation first occurs on the outboard wing panel for angles of attack of approximately 2, and wing apex vorticies become apparent for alpha or = 4 deg. However, the occurrence of the leading edge vortex flow may be postponed with leading edge devices. Of the devices considered, the most promising were a simple leading edge deflection of 30 deg and a leading edge slat system. The trailing edge flap effectiveness was found to be essentially the same for the configuration employing either of these more promising leading edge devices. Analysis of the lateral directional data showed that for all of the concepts considered, deflecting leading edge downward in an attempt to postpone leading edge vortex flows, has the favorable effect of reducing the effective dihedral

    An automated procedure for material parameter evaluation for viscoplastic constitutive models

    Get PDF
    An automated procedure is presented for evaluating the material parameters in Walker's exponential viscoplastic constitutive model for metals at elevated temperature. Both physical and numerical approximations are utilized to compute the constants for Inconel 718 at 1100 F. When intermediate results are carefully scrutinized and engineering judgement applied, parameters may be computed which yield stress output histories that are in agreement with experimental results. A qualitative assessment of the theta-plot method for predicting the limiting value of stress is also presented. The procedure may also be used as a basis to develop evaluation schemes for other viscoplastic constitutive theories of this type

    An experimental comparison of several current viscoplastic constitutive models at elevated temperature

    Get PDF
    Four current viscoplastic models are compared experimentally for Inconel 718 at 593 C. This material system responds with apparent negative strain rate sensitivity, undergoes cyclic work softening, and is susceptible to low cycle fatigue. A series of tests were performed to create a data base from which to evaluate material constants. A method to evaluate the constants is developed which draws on common assumptions for this type of material, recent advances by other researchers, and iterative techniques. A complex history test, not used in calculating the constants, is then used to compare the predictive capabilities of the models. The combination of exponentially based inelastic strain rate equations and dynamic recovery is shown to model this material system with the greatest success. The method of constant calculation developed was successfully applied to the complex material response encountered. Backstress measuring tests were found to be invaluable and to warrant further development

    On the thermodynamics of first-order phase transition smeared by frozen disorder

    Full text link
    The simplified model of first-order transition in a media with frozen long-range transition-temperature disorder is considered. It exhibits the smearing of the transition due to appearance of the intermediate inhomogeneous phase with thermodynamics described by the ground state of the short-range random-field Ising model. Thus the model correctly reproduce the persistence of first-order transition only in dimensions d > 2, which is found in more realistic models. It also allows to estimate the behavior of thermodynamic parameters near the boundaries of the inhomogeneous phase.Comment: 4 page

    Monte Carlo Simulation of a Random-Field Ising Antiferromagnet

    Full text link
    Phase transitions in the three-dimensional diluted Ising antiferromagnet in an applied magnetic field are analyzed numerically. It is found that random magnetic field in a system with spin concentration below a certain threshold induces a crossover from second-order phase transition to first-order transition to a new phase characterized by a spin-glass ground state and metastable energy states at finite temperatures.Comment: 10 pages, 11 figure

    Classical XY Model in 1.99 Dimensions

    Full text link
    We consider the classical XY model (O(2) nonlinear sigma-model) on a class of lattices with the (fractal) dimensions 1<D<2. The Berezinskii's harmonic approximation suggests that the model undergoes a phase transition in which the low temperature phase is characterized by stretched exponential decay of correlations. We prove an exponentially decaying upper bound for the two-point correlation functions at non-zero temperatures, thus excluding the possibility of such a phase transition.Comment: LaTeX 8 pages, no figure

    Hysteresis, Avalanches, and Disorder Induced Critical Scaling: A Renormalization Group Approach

    Full text link
    We study the zero temperature random field Ising model as a model for noise and avalanches in hysteretic systems. Tuning the amount of disorder in the system, we find an ordinary critical point with avalanches on all length scales. Using a mapping to the pure Ising model, we Borel sum the 6ϵ6-\epsilon expansion to O(ϵ5)O(\epsilon^5) for the correlation length exponent. We sketch a new method for directly calculating avalanche exponents, which we perform to O(ϵ)O(\epsilon). Numerical exponents in 3, 4, and 5 dimensions are in good agreement with the analytical predictions.Comment: 134 pages in REVTEX, plus 21 figures. The first two figures can be obtained from the references quoted in their respective figure captions, the remaining 19 figures are supplied separately in uuencoded forma

    Anomalous Fluctuations of Directed Polymers in Random Media

    Full text link
    A systematic analysis of large scale fluctuations in the low temperature pinned phase of a directed polymer in a random potential is described. These fluctuations come from rare regions with nearly degenerate ``ground states''. The probability distribution of their sizes is found to have a power law tail. The rare regions in the tail dominate much of the physics. The analysis presented here takes advantage of the mapping to the noisy-Burgers' equation. It complements a phenomenological description of glassy phases based on a scaling picture of droplet excitations and a recent variational approach with ``broken replica symmetry''. It is argued that the power law distribution of large thermally active excitations is a consequence of the continuous statistical ``tilt'' symmetry of the directed polymer, the breaking of which gives rise to the large active excitations in a manner analogous to the appearance of Goldstone modes in pure systems with a broken continuous symmetry.Comment: 59 pages including 8 figures ( REVTEX 3.0 )E-mail: [email protected]

    Ground state numerical study of the three-dimensional random field Ising model

    Full text link
    The random field Ising model in three dimensions with Gaussian random fields is studied at zero temperature for system sizes up to 60^3. For each realization of the normalized random fields, the strength of the random field, Delta and a uniform external, H is adjusted to find the finite-size critical point. The finite-size critical point is identified as the point in the H-Delta plane where three degenerate ground states have the largest discontinuities in the magnetization. The discontinuities in the magnetization and bond energy between these ground states are used to calculate the magnetization and specific heat critical exponents and both exponents are found to be near zero.Comment: 10 pages, 6 figures; new references and small changes to tex

    Upper critical dimension, dynamic exponent and scaling functions in the mode-coupling theory for the Kardar-Parisi-Zhang equation

    Full text link
    We study the mode-coupling approximation for the KPZ equation in the strong coupling regime. By constructing an ansatz consistent with the asymptotic forms of the correlation and response functions we determine the upper critical dimension d_c=4, and the expansion z=2-(d-4)/4+O((4-d)^2) around d_c. We find the exact z=3/2 value in d=1, and estimate the values 1.62, 1.78 for z, in d=2,3. The result d_c=4 and the expansion around d_c are very robust and can be derived just from a mild assumption on the relative scale on which the response and correlation functions vary as z approaches 2.Comment: RevTex, 4 page
    corecore